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Introduction

“No computer has ever been designed that is ever aware
of what it’s doing; but most of the time, we aren’t
either.”

— Marvin Minsky, 1927-2016

Learning is the process of transforming information and experience into knowledge and
understand-
ing. Knowledge and understanding are measured by the ability to perform certain tasks
independently. Machine Learning is therefore the study of algorithms and models for
computer systems to carry out certain tasks independently, based on the results of a
learning process. Learning tasks can range from solving simple classification problems,
such as handwritten digit recognition, to more complex tasks, such as medical diagnosis
or driving a car.
Machine learning is part of the broader field of Artificial Intelligence, but distinguishes
itself from more traditional approaches to problem solving, in which machines follow a
strict set of rules they are provided with. As such, it is most useful for tasks such as
pattern recognition, that may be simple for humans but where precise rules are hard to
come by with, or for tasks that allow for simple rules, but where the complexity of the
problem makes any rule-based approach computationally infeasible. An illustrative
example of the latter is the recent success of DeepMind’s AlphaGo 1, a computer
program based on reinforcement learning, at achieving super-human performance at
the boiali__d ame Go (FElff). Even though the rules of the game are simple, the task of
A General Framewor Orﬂéﬁﬂg'ﬂ% best human players seemed impossible only a

ecgde ago due to the daunting complexit at ensuyes from the number of possible
E{@sg d %earmng Iltes at the |§tersegt|on yo appro>?|mat|on t!.:heory, probaEﬁlty theory,

tatistics, and optimization theory. We illustrate the interplay of these fields with a few
basic examples.
In its most basic form, the goal of machine learning is to come up with (learn) a function

h: X—Y,

wherg space of inputs or features, and cansists of outputs or responses. The input space

X is usually modelled as a metric space (such as Rd), and the inputs could represent images, texts,
emails, gene sequences, networks, financial time series, or demographic data. The output could consi:
of quantitative values, such as a temperature or the amount of a certain substance in the body, or of

https://deepmind.com/research/case- studies/alphago- the- story- so- far
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qualitative or categorical values, such as IYES,NO} or {0,1,2,3,4,5,6,7,8,9}. The first type of
problem is usually called regression, while the latter is called classification. The function h is sometimes
called a hypothesis, a predictor, or a classifier. A classifier h that takes only two values (typically 0 and
1,or
-1 and 1) is called a binary classifier. In a machine learning scenario, a function h is chosen from

a predetermined set of functions
H, called the hypothesis space.

Machine learning problems can be subdivided into supervised and unsupervised learning problems. In
supervised learning, we have at our dispos& aX-lleoti6n of mplUt-output data pairs

andthegoalistolearnafunctionh: fromthistiatayThecollectionofpairs 1(i,yi)ni=1iscalled

the training set. In unsupervised learning, one does not have access to a training set. The prototypical
example of an unsupervised learning task is clustering, where the tasks is to subdivide a given data set
into groups based on similarities. This course will deal mainly with supervised learning.

Example 1.1 (Digit recognition). Given a dataset of pixel matrices, each representing a grey-scale image,

with associated labels telling us for each image the number it represents, the task is to use this data to
train a computer program to recognise new numbers (see Figure 1.1). Such classification tasks are often
carried out using deep neural networks, which constitute a powerful class of non-linear functions.
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Figure 1.1: The MNIST (Modified National Institute of Standards and Technology, http://yann.
lecun.com/exdb/mnist/) dataset is a large collection of images of hand-written digits, and is a
frequently used benchmark in machine learning.

Example 1.2. (Clustering) In clustering applications, one observes data xitni=1,andthegoalisto
subdivide the data into a number of distinct groups based on similarity, where simiiarity is measured
using a distance function. Figure 1.2 shows an example of an artificial clustering problem and a possible


http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

.:.l .o.o.
s i ko
i . ° :.&.'01&"‘ % ) ° :.&....o &!’t &%
L suenbm sty NG, B {0
2| '.g;:w.?:o '0 0.00 ; . 2| *.. . R
. L ° °a’ ~.°... ° 2’ ...'. .
0 .oo.j.ao.. . 0 ....f.ao. .

Figure 1.2: A collection of random points on the plane. The image on the right shows the four clusters as
determined by the k-means algorithm.

solution. The notion of distance used depends on the application. For example, for binary sequences or
DNA sequences one can use the Hamming metric, which simply counts the positions at which two
sequences differ. Clustering is used extensively in genetics, biology and medicine. For example, clustering
can be used to identify groups of genes (segments of DNA with a function) that encode proteins which are
part a common biological pathway. Other uses of clustering are market segmentation and community
detection in networks.

Approximation Theory

One often makes the simplified assumption that the observed training data comes from an unknown

function f:
X =Y. The goal is to approximate the function f with a function h from a hypothesis class

H,basedonlyontheknowledgeafinitesetofsamples{xi,yiin yi=f(xii=1,whereweassume )for
i € [n]:=1{1,..., n}. Which class of functions is adequate depends on the application at hand, as well
as on computational and statistical considerations. In many cases a linear function will do well, while in
other situations polynomials or more complex functions, like neural networks, are better suited.

Example 1.3. (Linear regression) Linear Regression is the problem of finding a relationship of the form

Y = Bo+ B1X1+ ..+ Bp Xp,

where the X1,...,.Xp are covariates that describe certain characteristics of a system and Y is the
response. Given a set of input-output pairs (xi, yi), arranged in a matrix X and a vector y, we can guess

thecorrectB=(j3,B,...,8>01p)bysolvingtheleast-squaresoptimizationproblem
L 2
jgimize XB -y
Figure 1.3 shows an example of linear regression.

Example 1.4. (Text classification) In text classification, the task is to decide to which of a given set of
categories a given text belongs. The training data consists of a bag of words: this is a large sparse matrix,
whose columns represent words and the rows represent articles, with the (i, j)-th entry containing the
number of times word j is contained in text i.
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Figure 1.3: The relationship of mass to the logarithm of the basal metabolic rate in mammals. The data
consists of 573 samples taken from the PanTHERA database, and the example featured in the episode
Size Matters of the BBC series Wonders of Life. The right images shows the regression line determined
using linear least squares.

Goal Soup | \ \ \
Article1 50 ‘ ‘ ‘

Article217

For example, in the above set we would classify the first article as "Sports" and the second one as
"Food". One such training dataset is the Reuters Corpus Volume I (RCV1) 2, an archive of over 800,000
categorised newswire stories. A typical binary classifier for such a problem would be a linear classifier
of the form
h(x >+ )= W X b,

with w = Rindb

€ R. Given a text, represented as a row of the dataset x, it is classified into one of two
classe [+1

fExample 1.5_1}, depending on whether h(x) > 0 or h(x) < 0.
(Deep Neural Networks) Neural networks are functions of the form
f‘ of 21 o .. flq

whereeachfisthecomponen-wisecompositionofan Rdk-1k activationfunctionowithalinearmap

Rdk , x

—7Wkx+bk.Anactivationfunctioncouldbethesigmoido(x)=1/(1+e-x),which
takes values between (0, 1), and which can be interpreted as “selecting” certain coordinates of a vector
depending on whether they are positive or negative (see Figure 1.4). The coefficients wkij of the matrix W
k in each layer are the weights, while the entries of bk are called the bias terms. The weights and bias
terms are to be adapted in order to fit observed input-output pairs. A neural network is usually
represented as a graph, see Figure 1.5. Neural networks have been extremely successful in pattern
recognition, and are widely used in applications ranging from natural language processing to machine
translation and medical diagnostics.

One of the earliest theoretical results in approximation theory is a theorem by Weierstrass that shows

thatwe-canapproximate-any-contintous-function on an interval to arbitrary precision by polynomials.


http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://www.bbc.co.uk/programmes/b01qygxz
http://www.bbc.co.uk/programmes/b01qygxz

Figure 1.4: The sigmoid function
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Figure 1.5: A neural network. Each layer correspond to applying a linear map to the outputs of the
previous layer, followed by an activation function. Each arrow represents a weight. For example, the

transition from the first layer to the second is a map R3 . ) _
— R4, and the weight associated with the arrow

from the second node in layer 1 to the first node in layer 2 is the (1, 2)-entry in the matrix defining the
corresponding linear map.

Theorem 1.6 (Weierstrass). Let f be a continuous function on [a, bl. Thenforany ¢ > Qthere exists a
polynomial p(x) such that

i [ -p|le =max4)b[]f(X) - P(X)|&

This theorem is remarkable because it shows that we can approximate any continuous function on a
compact interval using only a finite number of parameters, the coefficients of a polynomial. The problem
with this theorem is that it gives no bound on the size of the polynomial, which can be rather large. It also
does not give a procedure of actually computing such an approximation, let alone finding one efficiently.
We will see that neural networks have the same approximation properties, i.e., for every continuous
function on an interval can be approximated to arbitrary accuracy by a neural network. There are many
variations on such results for approximating a class of functions through a simpler class, and we will be
interested in cases where such approximations can be efficiently computed. One way of finding good
approximating functions is by using optimization methods.

Optimization

The notion of best fit is formalized by usinga  loss function A loss functionL:y, , y _, r +measures
the mismatch between a prediction on a given input X = yand anelementy < vy 1o €mpirical risk of



a function h-X Sy is the average loss L(h(xi),yi) over the training data,
~ n
R” 1(h):=

— ¥=1Lh(XD), v

i
One would then aim to find a function h among a set of candidate function py that minimizes the loss
when applying the function to the training data:

minimizeR " (h). (1.1)
&

Problem (1.1) is an optimization problem. Minimizing over a set of functions my look abstract, but

functions in H are typically parametrized by few parameters. For example, when the class H consists of

linear functions of the form 0 +B1x1 +
- -+Bpxp, as in Example 1.3, then the optimization problem (1.1)
amounts to minimizing a function over Rp+1. In the case of neural networks, Example 1.5, one optimizes
overtheweightswkandbiastermsbkiji.
The form of the loss function depends on the problem at hand and is usually derived from statistical
considerations. Two common candidates are the square error for regression problems, which applied to

3, HASHED e Lh(x)y)=(hix ) - )%

and the indicator loss function, which takes the general form

1ifh(x)=yL(h(x),y)=1{h .0ith
BLiflyx)=yL( {h(x)=y}=.0ifh(x) ‘

As this function is not continuous, in practice one often encounters continuous approximations. A binary

classifier is often implemented by a function h: X - [0,1] that provides a probability of an input

belonging to a class. If h(x) > 1/2, then x is assigned to class 1, while if h(x)
<1/2, then x is assigned
to class 0. A common loss function for this setting is the log-loss function, or cross-entropy,

L(h(x),y )= —yog(hx)) (1 y)logl h(x))
{———Bf(l 2),

“hx) _ log(ht) y =1
The function is designed to take on large vallag({if the class predidted By h(x) does not match y, and can

be interpreted in the context of maximum-likelihood estimation.

Finding or approximating a minimizer of a function falls into the realm of numerical optimization.
While for linear regression we can solve the relevant optimization problem (least-squares minimization)
in closed form, for more involved problems such as neural networks we use optimization algorithms such
as gradient descent: we start with an initial guess and try to minimize our function by taking steps in
direction of steepest descent, that is, along the negative gradient of the function. In the case of composite
functions such as neural networks, computing the gradient requires the chain rule, which leads to the
famous backpropagation algorithm for training a neural network that will be discussed in detail.

There are many challenges related to optimization models and algorithms. The function to be

minimized may have many local minima or saddle points, and algorithms that look for minimizers
may find any one of these, instead of a global minimizer. The functions to be minimized may not be
differentiable, and methods from the field of non-smooth optimization come into play. The biggest
challenge for optimization algorithms in the context of machine learning, however, lies in the particular



form of the objective function: it is given as a sum of many terms, one for each data point. Evaluating such
a function and computing its gradient can be time and memory consuming. An old class of algorithms that
includes stochastic gradient descent circumvents this issue by not computing the gradient of the whole
function at each step, but only of a small random subset of the terms. These algorithms work surprisingly
well, considering that they do not make use of all the information available at every step.

Statistics

Suppose we have a binary classification task at hand, with Y = {0, 1}. We could learn the following

function from our data:

T\{zx{i(:)(i' {

1 otherwise.
This is called learning by memorization, since the function simply memorizes the value yi for every
seen example xi. The empirical risk with respektitorthe unit loss function for this problem is
n A A
R™ 1(h)= P
- — 6}RX)=yi =0
Nevertheless, this is not a good classifier: it will not perform very well outside of the training set. This is
an example of overfitting: when the function is adapted too closely to the seen data, it does not generalize
to unseen data. The problem of generalization is the problem of finding a classifier that works well on
unseen data.

To make the notion of generalization more precise, we assume that the training data points (xi, yi)
are realizations of a pair of random variables (X, Y ), sampled from an (unknown) probability distribution
on the product

X x Y. The variables X and Y are in general not independent (otherwise there would
be nothing to learn), but are related by a relationship of the form Y = f(X) + €, where € is a random
perturbation with expected value E[€] = 0. One could interpret the presence of the random noise € as
indicative of uncertainty or missing information. For example, when trying to predict a certain disease
based on genetic markers, the genetic data might simply not carry enough information to always make a
correct prediction. The function f is called the regression function. It is the conditional expectation of

Y given a value of X
)= oY=

Given a classifier N e pand aloss function L,the generalization risk is the expected value

ROFFE  [L(h(X), Y.

IfLh®), y) =1 6 {h(x) = y}is the unit loss, then this is simply P{h(® = Y 1, i.e., the probability of
misclassifying a randomly chosen input-output pair. The training data can be modelled as sampling form
n pairs of random variables
X,Y( )(1n1Xn,Y)
that are identically distributed and independent copies of X, Y) . Given a classifier h, the empirical risk
Qecomes a random variable
"1

S50

h=_ s=1L(h(Xi), Yi).
The expected value of this random variable is

IR 1=

n

— $=IE[L(h(X0), WI=E [L(h(X), Y= R(h),



where we used the linearity of expectation and the fact that the (Xi, Yi) are independent and identically
distributed (i.i.d). The empirical risk R" (h) is thus an unbiased estimator of the generalization risk R(h).

Example 1.7. The loss function is often chosen so that the problem of empirical risk minimization

becomes a maximum likelihood estimation problem. Consider the example where Y takes values in
{0, 1} with probability P{Y = 1 | X = x} = f(x). Conditioned on X = x, Y is a Bernoulli random

variable with parameter p = f(x), and the log-loss function (1.2) is precisely the negative log-likelihood
function for the problem of estimating the parameter p.

When looking for a good hypothesis h, all we have at our disposal is the empirical risk function
constructedfromthetrainingdata.Itturnsoutthatthequalityofanempiricalriskminimizerh “ froma
hypothesis class
H can be measured by the estimation error, which compares the generalization risk of
h”tothesmallestpossiblegeneralizationriskin
H, and the approximation error, which measures how
small the generalization risk can become within
H. There is usually a trade-off between these to errors:
if the class of functions
His large, then it is likely to contain functions with small generalization risk
and thus have small approximation error, but the empirical risk minimizer h" is likely to “overfit” the data

and not generalize well. On the other hand, if H is small (in the extreme case, consisting of only one

fug.gtion), then the empirical risk minzi.(r)nizer is likely to be close to the bgg,t possible hypothesis in

e Fitted model H bUt
1.5 . . . 1.5 1.54 True function | v
the approximation error will be largellf_&lre 1.6 shows an example jn which data from a function with
noise is approximated by polynomialssof different degrees. 05 |
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Figure 1.6: The data consists of 15 samples from the graph of a cosine function with added noise. The
three displays show an approximation with a linear function, with a polynomial of degree 5, and with a
polynomial of degree 15. The linear function has a large error on both the training set and in relation to the
true function. The polynomial of degree 15, on the other hand, has zero error on the training data (a
polynomial of degree d can fit d + 1 points with distinct x-values exactly), but it will likely perform poorly
on new data. This is an example of overfitting: more parameters in the model will not necessarily lead to a
better performance.

The field of Statistical Learning Theory aims to understand the relation between the generalization

risk, the empirical risk, the capacity of a hypothesis class H, and the number of samples n. In particular

notions such as the capacity of a hypothesis class are given a precise meaning through concepts such as
VC dimension, Rademacher complexity, and covering numbers.

Notes

The ideas from approximation theory, optimization and statistics that underlie modern machine learning
are old. Linear regression was known to Legendre and Gauss. The Weierstrass Approximation Theorem



was published by Weierstrass in [31], see [28, Chapter 6] for an account and more history on
approximation theory. Neural networks go back to the seminal work by McCulloch and Pitts from 1943
[16], followed by Rosenblatt’s Perceptron [22]. The term “Machine Learning” was first coined by Arthur
Samuel in 1959 [24]; at the time, “Cybernetics” was still widely used. Gradient descent was known to
Cauchy, and the most important algorithm for deep learning today, Stochastic Gradient Descent, was
introduced by Robbins and Monro in 1951 [21]. The field of Statistical Learning Theory arose in the 1960s
through seminal work by Vapnik and Chervonenkis, see [29] for an overview. For an account of
mathematical learning theory, see [5].

Research in machine learning exploded in the 1990s, with striking new results and applications appearing
at breathtaking pace. Still, apart from some of the more theoretical developments in learning theory and
high-dimensional probability, these breakthroughs rarely relied on mathematics that was not available 50
years ago. So what has changed since the early days of cybernetics? The main reason for the sudden
surge in popularity is the availability of vast amounts of data, and equally important, the computational
resources to process the data. New applications have in turn led to new mathematical

problems, and to new connections between various fields.
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Overview of Probability

In this lecture we review relevant notions from probability theory, with an emphasis on conditional
expectation.

Probability spaces
A probability space is atriple (0, P F,), consisting of a set ), a o-algebra F of subsets of (), called
events, and a probability measurf. That

F is a o-algebra means that it contains @ and Q and that it is
cloged-ander countable unions and @mplements. The probability measure Pis a non-negative function

B0 i (U)SPAI=P(ii

j

Ali)

fora countable collection {Aibwith Ai N A= @ fdh i = j. We interpret P(A U B) as the probability of A
or B happening, and P(A .
N B) as the pro‘agmﬁfb'ﬁ&)and B happening. Note that (A U B)c = Ac N B,

WRIGR REW e complement of A in Q. If the Ai are not necessarily disjoint, then we have the important
(AD).

i
This bound is sometimes also referred to as the zero-th moment method. We say that an event A holds
almost surely if P(A) = 1 (note that this does not mean that the complement of A in Q is empty).
Random variables
A random variable is a measurable map
X

where y istypically R, Rd, Norafirif¢set .., k} .Forameasurable set A — y, we write

Px €A :=P({w € Q:Xw) eAY).

Wewillusuallyuseupper-caseletters ~ srahdgmvariables,lower-caseletters  values that x, y, Zorthe
these can take, and x, y, z if these are vectors in some Rd.

11



Example 2.1 A random variable specifies which events “we can see”. For example, let Q = 11,2,3,4,5, 6}
and define X:Q 01 { X W= w &6[ 1}
Then 1bysetting 1{ ,whereldenotestheindjcatorfunction. 2

=)= 3" P(X=0)=
3 .
If all the information we get about & from , th&h we can only determiﬁe whether the result of rolling a die
gives an even number greater than 3 or not, but not the individual result.

The map A

—-7P(X&EA)forsubsetsofXiscalledthedistributionoftherandomvariable.The
distribution completely describes the random variable, and there will often be no need to refer to the

domain Q. IfF: X =Y is another measure map, then F (X) is again a random variable. In particular, if
Xis a subset of Rd, we can add and multiply random variables to obtain new random variables, and if X
and Y are two distinct random variables, then (X, Y ) is a random variable in the product space. In the
latter case we also write P(X

€ A, Y € B) instead of P((X, Y) € A x B). Note that this also has an
interpretation in terms of intersections of events: it is the probability that both X
€AandY €B.
A discrete random variable takes countai)e many values, for example in a finite set

{1,....,k}orin

N. In such a case it makes sense to talk &{eGt thABr‘obabib(»gf igdividual outcomes, such as P(X = k)

forsome k € X. An absolutely contifuous randgm variable takes values in R or Rd ford > 1, and is

HeHhfeaasenufTg a dexsitR pve e@Xsideehfibatumulative distribution function (cdf) P(X < t) fort € R.
The complement, P(X > t) (or P(X
> t)), is referred to as the tail. Many applications are concerned
with finding good bounds on the tail of a probabffity, as the the tail often models the probability of rare
events. If X is absolutely continuous, then the ptob¥bility of taking a particular single value vanishes,
P(X =a) = 0. For a random variable Z = () takingXallfes in
X =Y, we can consider the joint

density pZ(x,y), but also the individual qeXditis opand xfoy iddgh we have
Y
The ensuing distributions for X and ar€’called the marginal distributions.

Example 2.2. Three of the most common distributions are:

«Bernoullidistribution ,takingieriUesin 0,1 anddefined by

P(X =1)= p, PEX:}O):l =01 - p

for some p €10,1].WecanreplacetherangeX { lbyanyothertwo-elementset, forexample

{-1, 1}, but then the relation to other distributions may not hold any more.

« BinomialdistributionBin(n,p),takingvalue

(sin){0,...,nfanddefinedbynP(X=k)=pk(1-p)n-k(2.1)k

pfkio, 1, ..., nland some o :
of Bernoulli random variables, € [0, 1]. We can also write a binomial random variable as a sum

have the value 1. X=X1+ +Xn,sinceX=kifandonlyifkofthesummands



» Normal distribution (M, oRalso referred to as Gaussian, with mean | and variance o?deﬁned
oN R and with density

1t
= ——e 2
y(X Vorg

This is the most important distribution in probability and statistics, as most other distributions can
be approximated by it.

Expectation

The expectation (or mean, or expected value) of a discrete random variable is defined as

EIXs]=kkEX PX =k).

For an absolutely continuous random variajbéﬁafgth density p(x), itis defined as

p(x) dx.
X

Note that the expectation does not always need to exist since the sum or integral need not converge. When
Jye require it to exist, we often write this as E[X] <
Example 2.3. The expectation of a Bernoulli random variable with parameter p is E[X] = p. The

expectation of a Binomial random variable with parameters nand p is E[X] = np. For example, if one
were to flip a biased coin that lands on heads with probability p, then this would correspond to the number

of heads one would “expect” after n coin flips. The expectation of the normal distribution N (4, 62) is p
This is the location on which the “bell curve” is centred.

One of the most useful properties is linearity of expectation. If X1, . . ., Xn are random variables
takingvaluesinasubsetofdangl n @8 ER then

E[al X® .. #anXn]=alE[X1]+..+ anEXn]
Example 2.4. The expected value of a Bernoulli random variable with parameter pis
EX]=1 PX =1)+0  PX =0)= p.

The linearity of expectation then immediately gives the expectation of the Binomial distribution with

parameters n and p. Since such a random variable can be writtenas1+ X=X o
-+ + Xn, with Xi

Bernoulli, we get _ o | = I+ ... X = n

E[X E[X1+ +Xn E[X]1 +E[n

This would be (slightly) harder to deduce from the direct definition (2.1), when ?pe would have to use the
binomial theorem. ‘

IfF:

X =Y is a measurable function, then the expectation of the random variable can be
expressed

[ F(X)as E[F(X)I=F(x)p(x)dx (2.2)X



in the case of an absolutely continuous random variable, and similarly in the discrete case. *

An important special case is the indicator function

_ {1 X &A

F(X)—l{X €Ay = 0 X <A

Then 6
E[1

{XEA}l=P(XEA), (2.3)
as can be seen by applying (2.2) to the indicator function. The identity (2.3) is useful, as it allows to

properties of the expectation, such as linearity, in the study of probabilities of events. The expectation also
has the following monotonicity property: if 0

E <X<Y,whereX, Y are real-valued random variables,
then E[X]
<[l R
Another important identity for random variables is the following. Assume X is absolutely continuous,
takesyglues in, and X EIX =0 p (X > t)dt.

Using this identity, one can deduce bounds on the expectation from bounds on the tail of a probability
distribution.
The variance of a random variable is the expectation of the square deviation from the mean:

Var( X)=E [(X _ E[x D21.

The variance measures the “spread” of a distribution: random variables with a small variance are more
likely to stay close to their expectation.

Example 2.5. The variance of the normal distribution is 62. The variance of the Bernoulli distribution is

9(&) (verify this!), while the variance of the Binomial distribution is np(1 - p).
The variance scales as Var(aX + b) = a2Var(X). In particular, it is translation invariant. The
variance is in general not additive (but it is, if the random variables are independent).

Independence

A set of random variables i} taking values in the same range X is called independentif for any subset

{Xi1,... Xilandanysubsets1kj’,wehave C X < k
PXi, € Al,...,Xik AR=PXil €A1). .PXi, cAk).

In words, the probability of any of the events happening simultaneously is the product of the probabilities
of the individual events. A set of random variables o o )

{Xi}is said to be pairwise independent if every
subset of two variables is independent. Note that pairwise independence does not imply independence.
1

We will not always list the formulas for both the discrete and continuous, when the form of one of these cases can be easily
guessed from the form of the other case. In any case, the sum in the discrete setting is also just an integral with respect to the
discrete measure.



Example 2.6. Assume you toss a fair coin two times. Let X be the indicator variable for heads on the first
toss Y the indicator variable for heads on the second toss, and Z the random variable thatis 1if X =Y
0if X
6=Y . Taken individually, each of these random variables is a Bernoulli random variable with
. They are also pairwise independent, as is easily verified, but not independent, since

a
P 1
6 P =1,Y fLE-D===P( - - X =DPY=DPZ =)

Intuitively,theinformationthat a)%d:Ylalr(:aaldyimplies ,soaddingth%czoprstraintdoes
not alter the probability on the left-hand side.
We say that a set of random variables

{Xi}is i.i.d. if they are independent and identically distrib-
uted. This means that each Xi can be seen as a copy of X1 that is independent of it, and in particular all
the Xi have the same expectation and variance.
One of the most important resydts in probability (and, arguably, in nature) is the (strong) law of large

R R RS s

m;ﬁXH.an).

Since each random variable is, by definition, a function on a sample space (), we can consider the
pointwise limit

lim_)XOo non
which is the random variable that for eaclv takes the limit limn | o, X n (w)s value.2
SN0
Theorem 2.7 (Law of Large Numbers). i Let beasequenceofi.i.d.randomvariableswith E[X1] =

U < o -Thenthesequenceofaverages c%mergesalmostsurelytop:

PimXnp =)=1.
n 5 oo

Example 2.8. Let each Xi be a Bernoulli random variable with parameter p. One could think this as flipping
a coin that will show heads with probability p. Then Xn is the average number of heads when

flipping the coin n times. The law of large numbers asserts that as n increases, this average approaches p
almost surely. Intuitively, when flipping the coin a billion times, the number of heads we get divided by a
billion will be indistinguishable from p: if we do not know p we can estimate it in this way.

Some useful inequalities

In applications it is often not possible to get precise expressions for a probability we are interested in,
most often because we don’t know the exact distribution we are dealing with and only have access to
parameters such as the expectation or the variance. There are several useful inequalities that help us
bound the tail or deviation probabilities. For the following, we assume

XCR
« Jensen’s Inequality Let f: R

- R be a convex function, that is, f(Ax + (1 - A)y) < AMf(x) +
a E )< EfX)].

= hidi edd-r variable in the formal sense follows from measure theory, we will not be concerned with those

details. f(IX(



« Markov’sInequality  (“first moment method”) For > X 0andA>0,

<
 Chebyshev’sInequality (“second moment methody®pr

P(X _ EIXI | 5A)
<Var(X).A2
« ExponentialMomentInequality Forany S, A 0

PX 2A)< e M E[e™ )

Note that both the Chebyshev and the exponential moment inequality follow from the Markov
inequality applied to certain transformations of X.

Conditional probability and expectation

Givenevents A, B —Q with P(B) %0 ,the conditional probability of A conditioned on B is defined as
P(A

9 o= "

Oneinterpretsthisastheprobabilityof ifweassume .Thatis?fweobservedB,thenwereplacethe whole set Q by
B and consider B to be the new space of events, considering only the part of events A that lie in B. We can
rearrange the expression for conditional probability to

P g )=P( AF B P(B),

from which we get the sometimes useful identity
| P(A=0Pe A B BIP( Ag ¢ P(BC), (2.4)

whereBcdenotesthecomplementofth B .
Sincebyexchangingthero@of%nd weget p(,% B )=R( Ef A JP(A), we arrive at the famous
Bayes rule for conditional probability:

P(B

p(A1 B )= Wﬁj‘é‘)-p—w;

defined whenever both A and B have non-zero probability. These concepts clearly extend to random
variables, where we can define, for example,

P(X AzY

Note that if X and Y are independent, then the conditional probability is just the normal probability of X:

knowing that Y ) o , ,
€ B does not give us any additional information about X! If we fix an event such

as
{Y € B}, then we can defing the ggndisipring of the random variable X to this event as the random
variable X" with distribution P Caiat Sly €B.
Inparticular, PX < A | €B)+(X & ¢ c
Y B)=1.



Example 2.9. Consider the case of testing for doping at a sports event. Let X be the indicator variable for
the presence of a certain drug, and Y the indicator variable for whether the person tested has taken the
drug. Assume that the test is @@egirate when the drug is present and 99% accurate when the drug is not
present. We would like to know the probability that a person who tested positive actually took the drug,

namely P(Y =1 X =)

| .Translatedintoprobabilisticlanguage,weknowthat
X1 Y=1)=099,= PX = |Y=1=001=
P(X0 VY 0)=0.99, PX 0 Y 0)=0.01

Assuming that only 1% of the participants have taken the drug, which translates to P(Y =1)=0.01 ,we
find that the overall probability of a positive test result is, using (2.4),

P =1)=PX=1 [Y=0p(y=0)PX =1 Y =P =)
=0.010.99+0.99 :

Hence, using Bayes’ rule, we conclude that 10.01=0.01%8

PX =1 |y=1)py =1)0.99
That is, we get the surprising result that even though our test is very unlikely to give false positives and

false negatives, the probability that a person tested positive has actually taken the drug is only 50%. The
reason is that the event itself is highly unlikely.

01==05.

P(Y :1| X =1)=

We now come to the notion of conditional expectation. Let X,Y be random variables. If X is
discrete, then the conditional expectation of X c

yonditionedonaneventY=yisdefinedasE[X|Y=y]=kP(X=k|Y=y).(2.5)k

This is simply the expectation of the random variable X" with distribution P(X’ EA)=P(XEA

Y =vy). Intuitively, we assume that Y =y is given/has been observed, and consider the expectation of X
under this additional knowledge.

Example 2.10. Assume we are rolling dice, let X be the random variable giving the result, and let Y be
the indicator variable for the event that the result is at most 4. Then E[X] = 3.5 and E[X Y =1]=2.5

(verify this!). This is the expected value if we have the additional information that the result is at most 4.
In the absolutely continuous case we can define a conditional density

pXY (X, y)
pxX Y=y()=, (2.6)pY(y)

where pX,Y is the joint density of (X, Y) and pY t

Wereplac e{ng%e&\s,\llwﬁ;\r(mwggpe%gRg\%l/expectat|on|sthendeﬁnedE[XIY:y]:prIY:y(x)dx.(2.7)X
densityXX R&s been observed when computing the expectation of|y =y that takes into account that a value

X When looking at (2.5) and (2.7), we get a different number E[ cy
dssume |
Y to be the space where Y takes values. Hence, we can | Y=ylforeachy ] where we
as follows: define arandom variable E[XY]onY

= EXy 0= EXy =l



If X = f(Y) is completely determined by Y, then clearly

B y IO =B}y =W=E IF (Y)Y =yI=E [f(y) |y =1=Fy),
since the expected value of a constant is just that constant, and hencd KY ] = f(Y)l asarandom
variable.

Using the definition of the conditional density (2.6), Fubini’s Theorem and expression (2.7), we can
writetheexpectationof ]asx

E[X ]= X (x) dx
I'xp X]
= >{?EXIY )(x, y) dy dx

[ x

=I Yo Tp*X,)Y)(x,y)dxd'

= xp(X ) [Ody= EX y = YpY (y)dy.
Y XY [Y=y)(x)dx pY y

One can interpret this as saying that we get the expected value of byXntegrating the expected values
conditioned on Y =y with respect to the density of . Inthe discrete case, the identity has the form

= P =
ElXg)oy EIX YIP (Y =y).
| 'Y
The above identities can be written more compactly as
E[E[X Y
| XY e,

In the context of machine learning, we assume that we have a (hidden) map f :

X =Y froman input
space to an output space, and that, for a given input x
€ X, the observed output is y = f(x) + €, where €
is random noise with E[€] = 0. If we consider thesinpuXak & random variable X, then the output is random

V\ﬂfiﬁableﬁ[e]Xo(“theexpectedva[ueof ]. For & when knowing X, is zero”). We are interested in the value
E[?( « this, we get

ELY y 1=EIf(X) 3 1+E[ey 1=¢X),
since f(X) is completely determined by X.
Concentration of measure
A very important refinement of Chebyshev’s inequality are  concentration inequalities, which state that

the probability of exceeding the expectation is exponentially small A prototype of such an inequality is
Hoeffding’s Bound.

Theorem 2.11 (Hoeffdin Let beindependentrandomvariablestakingvalues
[01] yg'sInequality). X1,.. Deilrcaveiegs=fihemien xit >0
n n

P(jS - E[S],qy <2e-27



Note the implication of this: if we have a sequence of random variables IXi} bounded in [0, 1] (for

example, the result of repeated, identical experiments or observations) then as n increases, the probability
that the average of the random variables deviates from its mean decreases exponentially with n. In
particular, if the random variables all thave the same expectation y, then (by linearity of expectation) we

have E[Xn] = y, and the probability of straying from this value becomes very small very quickly!

Notes

Even though probability theory and statistics are central to machine learning, probabilistic concepts are
often not used rigorously. For example, one frequently encounters expressions such as P(X

|'Y) which,
taken literally, do not make sense. Depending on context, such an expression may refer to either the
conditional expectation E[X | Y ], the conditional probability P(X € A|Y € B), or the conditional

density pX
|Y =y(x). It turns out that for most practical purposes it does not really matter, but it is just
something that a mathematics student used to rigorous definitions should be aware of.
A good general introduction to probability theory is §1.1 of [27]. Good references for concentration
of measure and related topics are [3, 30].
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3

Binary Classification

In this lecture we begin the study of statistical learning theory in the case of binary classification. We will
characterize the best possible classifier in the binary case, and relate notions of classification error to each
other.

Binary Classification

A binary classifier is a function
"% > v =01y,

Xis a space of features. The factqh%t we use it not very important, and in many cases
we will also consider classifiers taking values in bl

11 {-, whereconvenient.Binaryclassifiersariseina
variety of applications. In medical diagnostics, for example, a classifier could take an image of a skin
mole and determine if it is benign or if it is melanoma. Typically, can arise from a function X - [0,1]

where

that assigns to every input x a probability p. If p > 1/2, then x is assigned to class 1, and if p
<1/2itis
assigned to class 0.

In the context of binary classifigation w§ Hsm?l}y(yge@eymt {o%s fd(h@%@ y

X= Yy
The unit loss function does not distinguish between false positives %nd _ false negatives. A false positive

is a pair (x, y) with h(x) = 1 but y = 0, and a false negative is a pair fohghich )=0 buty=1.We
would like to learn a classifier from a set of observations

{(x,y)}Iniii=1CXxY. (3.1)

The classifier should not only match the data, but generalize in order to be able to classify unseen
data. For this, we assume that the points in (3.1) are drawn from a probability distributiog(on>< Y

, and
replace each data point (xi, yi) in (3.1) with a copy (Xi, Yi) of a random variable (X, Y) on
XxY.We
are after a classifier h such that the eﬁpecf?ﬁ)vzalue of the empirical risk
n —Zn Isixi )i 1 (3.2
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is small. We can write this expectation as

Eﬁ?en(h)h —2nE[ thx ) & Yirl

(2)1 yi=1n
P(h(Xi) 5 Yi)

> |

1
Eb(0= h % Y )= R(h),

where (1) uses the linearity of expectatﬁgg, expresses the expectation of an indicator function as
probability, and (3) uses the fact that all the(Xi,)Yi are identically distributed. The function R(h) is the

risk: it is the probability that the classifier gets something wrong.

Example 3.1. Assume that the distribution is such that is corppletely determined by X, that is,

Y = f(X). Then

6 R(h)=P(K X) = X)),

and R(h) = 0 if h = f almost everywhere. If
Xis a finite or compact set with the uniform distribution,
then R(h) simply measures the proportion of the input space on which h fails to classify inputs correctly.

While for certain tasks such as image classification there may be a unique label to each input, in
general this need not be the case. In many applications, the input does not carry enough information to
completely determine the output. Consider, for example, the case where

X consists of whole genome
sequences and the task is to predict hypertension (or any other condition) from it. The genome clearly
does not carry enough information to make an accurate prediction, as other factors also E)lay arole.To

account for this fdek Fiﬁ{orﬁp@tidn?déﬁﬁ%(“we‘-rég?é%ib@fuﬁ)&ﬁoﬁ 9 X) =P = 31X

Note that if we write
Y =1f(X)+ ¢,

then E[FX ] = 0, because
f(X )=El le]:“E[L(XJlx.]JrE[FX].

=fl'é('lr—“ﬂ
The Bayes classifier
While in Example 3.1 we could choose (at least in principle) h(x) = f(x)andget R(h) = 0,inthe
presence of noise this is not possible. However, we could define a classifier h * by setting
{10 1
h *X()z f (X) > 35
< fx) 3,

We call this the Bayes classifier The following result shows that this is the best possible classifier.

Theorem 3.2. The Bayes classifierh *satisfies
R(h *) = ink(h),
where the infimum is over all measurableh. Moreover, R(h < 1/2.

*)



Proof. Let h be any classifier. To compute the risk R (h), we first conditionon X and then average over
X:

RO = Ellfhx)sY HEED {h(x)s YPIl (3.3)
For the inner expectation, we have

ENE R (=6 Y K IR0, v=01+ 0=08% v 31X

= E[(1 XEY1
{HYX1NO)=1 1+ [ ()=0
@ Y X1
=1 N _
To see why (1) holds, recallthatﬂle{andom variable E {h{(?%)xl}}ﬁ[ﬂx)ll I+ 0)=01

fX 1hX
: : 1| takesvaluesE[ 1{h(x)=
HX=x],and Wl!l therefore only be non-zero if h x w%c’h%ﬂ,‘w&)&@ [gl}ll'é%e? ihdicator function

out of the expectation. [

Hence, using (3.3),
RO = E Eihoi T 2 %m_fﬁ)ﬂlm“)—%Hxn (3.4)

For (1), we decompose

h(X ) = Lyq - FXO)=1 (h X) = 1€ X) > 72 (1 (X))
FUh® =1  FOR(B X)) 12
4 X) =10 X)>3(L F(X))
F1hoo=1  gef(X),

where the inequality follows since (1 _ f (X)) >f & ) iffX) / <1 2 .Bythe same reasoning, for (2)
we get

(3.5

1 hX)=0fX 1hX)=0,Ff X)> /1212 f
{ <1} ( h®=0 ,F(X)L2 1(&)(
Combining the inequalities (3.5) and (3.6) within the bound (3.4) and collecting the terms that are
mulfipligduih dnéhbsethataremultipliedwith f X (1 ())

>
h Z ET{h()=0 ()«

()_{ 1- (3.6)

()12(1 ()]
X}f>?> /} -fX 0=1(1 ())]=

)

where the last equality follbws"from (3.4) appllecilto = *.The cfp}a;a)c(teriz&ti%n ﬁ?ﬁ; also shows that
R(h* Lefaf x) 1260 n 0120
—Ehmqf(xxu_f X%}xn
which completes the proof. f X, O

We have seen in Example 3.1 that the Bayes risk is 0 if Y is completely determined by X. At the
other extreme, if the response Y does not depend on X at all, then the Bayes risk is 1/2. This means that
for every input, the best possible classifier consists of “guessing” without any prior information, which
means that we have a 50% chance of being correct!

The error

h () E - ®= R(h) Rh
is called the excess riskor error of h with respect to the best possible classifier.



Approximation and Estimation

We conclude this lecture by relating notions of risk. In what follows, we assume that a class of classifiers

H s given, from which we are allowed to choose. We denote by h"n the classifier obtained by minimizing
w%ﬁérlwsirical risk R™ (h) over

R~ (h"n)=i ) s Vi
R n 'enLZln Imix ) & Yiy,

where the (Xi, Yi) are i.i.d. copies of a random variable (X, Y) on X x Y. Note that h™n is what we will

typically obtain by computation from samples (xi, yi). The way it is defined, it depends on n, the class of

W,'Hl?ﬂ?g random variables (Xi, Yi), and as such is itself a random variable.
We want h”n to generalize well, that is, we want

6 RGN =Ph () = v)

to be small. We know that the smallest possible value this risk can attain is given by R(h %), where h %

is the Bayes classifier. We can decompose the difference between the risk of h”n and that of the Bayes
classifier as follows:

REM_R(h*)=REM_ inf R+ inf R(h) R(h*)
he H h _

Estimation error Apﬁoxﬁatlon error

The first compares the performance of h”n against the best possible classifier within the class H. while the

second is a statement about the power of the class
H. We can reduce the estimation error by making the
class
H smaller, but then the approximation error increases. Ideally, we would like to find bounds on the
AJtypation error that converge to 0 as the number of samples n increases.



4

Finite Hypothesis Sets

T

Given a fixed hypothesis set computed from n random samples

H, we would like to study the classifier
(Xi, Yi) by minimizing the empirical risk over the class
H,

Bn oAy £ R™ 1(h)= : .
R"(h )—IEHLR (h), where n —3In 1six )  Yip.

Hence,forany, ishrgfdﬂrhvariablethatdependsonthenumberofsamplesnandonthe underlying probability
distribution. The classifier h~ is also a random variable, and depends on n, the class H, and the underlying
distribution. This is the object that we can compute from observed data. If h* denotes the Bayes
classifier, then we would like to bound the excess risk

E(h")=R(h")-R(h %), (A)

WherewerecallthatR(h)=P(h(X .Asopposedto, B
solely on the probability distribution. Moreover, for any fixed, ~ 6Y) R"Risnotarandomvariable:itdepends

ossible classifier in . h E[R"(h)] = R(h). Denote by h a best
, that is, the one that generalizes best:

R(=inf R(h).
h e H

The parameter h depends only on the class |y and the probability distribution. A less ambitious goal is to
bound the difference

R(h™) -R(h). (B)
We emphasize here that R (h) and R(h") are both random variables, and R*(h") is a random variable in

two ways. Bounds on (A) and (B) are therefore probabilistic. More precisely, for any given tolerance
0
€ (0, 1), we want to find constants C(n, 8) and C’(n, &) such that

R(h")
-R(h*)<C(n,d) and R(h")-R(h)<C'(n,d)
holds with probability 1
- 6. Ideally, the constants should also depend on properties of the set H, for
example the size of
H if this set is finite. In addition, we would like the constants to decrease to 0 as
n

— oo, In this lecture we will derive bounds on (B) in the case where H is a finite set.
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Risk bounds for finite sets of classifiers

In this section we prove the following bound.

Theorem4.1. Let |y = {h1,....hRK be a finite dictionary. Then for§ (0, 1),

0 V(2log2KR(h)<an )U
By . V(2log2KR(=an )

inf | — 02> 1 -5

This important result shows that (With_,hlgbgrgbabilli\)txg]\)/veRc?ﬁ Ab)ound the estimation error by a term
—~ + -

that is logarithmic in the size of ) : .
H, and propggtipal tg n({j2, where niis the number of samples. For fixed

or moderately growing K, this error goes to zero as n goes to infinity. If we denote by h the minimizer of

ﬁ@n%%e can write the estimation error as

RA_Rp =" R™(h")+R™(h)r(h) @.1)
cn <2suph

As a first step towards bounding the supren?u%,z\llgﬁ[ée%ﬁg BS0nd the difference
IR(h) - R"(h)| of an
individual, fixed h. The key ingredient for such a bound is a concentration of measure inequality known

as Hoeffding's bound.. , Let beindependentrandomvariablestakingvalues
fhegiem4hd {Bpeffdings In n,Z bethe average. Then for

Yequality).Z1,...,Zn,Zn)it0 2 y|<log(2/8)2n

-2 p

z
Using Hoeffding’s Inequality vJe olgtain the following bound on the difference between the empirical
risk and the risk of a classifier. 5

Lemma 4.3. For any classifier h and§,&),
R h) R(h)

holds with probability at least1_ O

Vlog(2/0)t=.2n
Proof. SetZi=1 )& }-Then
{h(XiYi

i%ipz(i:ﬁ“(h),

N, 1Zn - E[Zn
E 23] = E[R~ ()] = R(N),

and the Zi satisfy the conditions of Hoeffding’s inequality. Set § = 2 —2"t?and resolve for t, which gives

Hence, by Hoeffding’s inequality,

PIﬁA(h) - R(h)l >t B B 1>t) <9



and therefore, by taking the complement,

AR~ (h) - RN <H=1 —Rg~p)-R(h) ;4L 4 _ 5,
which was claimed. O

Proof of Theorem 4.1. The goal is to bound the supremum
SUPR
PoO

For this, we use the union bound. Indeed, foredth i we canapply Lemma 4.3 with §/K to show that

h R(hP_ 4.2)

=

p( 1R~ (hiy R(DI 5 it) . i—,

t

wheret = V 2108@/8) 1 yropability of (4.2) being bounded by can be expressed equivalently as

P(supR"(hL R(h) <t/2)
e H

= p(A~(hy)- Ry t/2,..., ) - R(hK) _ 1/2).

K
Since the right-hand side is an intersection bfévents, the  complement of this event is the union of the
events

A ~

IR" (hi)-R(hi)|>t,andwecanapplytheunionbound:

K
p( P - R, o2 i%1P(|F“e“(hi) ~ R(hi) >t/ 2)

< OK- =0.K
. . V<
Therefore, with probability at least 1 _ & we have

2 2 log(2K/3)
By - ROV SEEEE

and using (4.1) the claim follows. O

One drawback of the bound in Theorem 4.1 is that it does not take into account properties of the
underlying distribution. In particular, it is the same in the case where Y is completely determined by
Xas itisin the case in which Y is completely independent on X. Intuitively, in the first situation we
would hope to get better rates of convergence than in the second. We will see that using concentration
inequalities such as the Bernstein inequality, that take into account the variance of the random variables,
we can get better rates of convergence in situation in which the “variance” is not too big.

Notes






5

Probably Approximately Correct

As before, we consider a fixed dictionary
R"(h).Recall:

H and select one classifier h” that optimizes the empirical risk

« The empirical risk R~ and the classifier h~ depend on the data (Xi, Yi), 1

<i<n,andarerandom
variables. In parti€ular, they dépend on n; X x Y

«TheriskRh ERhdependsontheunderlyingdistributionon ,butnotonn. 1 5

We have seen that if

MR- ) RN (e bability wehave ~ 2.08K) + 2 10g(26

n .
Note that log(K) is proportional to the bit size of K: this is the amount of bits needed to represent
numbers up to K, and can be seen as a measure of complexity for the set

H (the “space” necessary to
represent K elements). Bounds such as (5.1) are called generalization bounds.

Probably Approximately Correct Learning

An alternative point of view to generalization bounds would be to ask, for given accuracy € > Oand

confidence n ) . o)
€ (0, 1), how many samples are needed to get an accuracy of € with confidence

PR(h") (Jegy 21 -8
zinfRhh
Assuming h x fX) R(h * EHanaYi(,(\)Nehave ,andh * wouldbethecorrectclassifier.The

classifierh “isthenprobably(witigprobabilityl
- )approximately(uptoanmisclassificationprobability
of at most €) correct. This leads us to the notion of Probably Approximately Correct (PAC) learning.

In what follows, we denote by size( H) the complexity of representing an element of H. This is not a

precise definition, but depends on the case at hand. For example, if
H={h1,..., hK}isa finite set, then
we can index this set using K numbers. On a computer, numbers up to K can be represented as binary

numbers using dlog2(K)e bits, and hence (up to a constant factor) size(H) = log(K) would be adequate

here. Similarly, we denote by size(
X) the complexity of representing an element of the input space. For

example, if
X C Rd, then we would use d as size parameter (possibly multiplied by a constant factor to
account for the size of representing a real number in floating point arithmetic on a computer). Note that

ii)z(?r(size(H) is not the same as the cardinality of these sets!
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Peﬁnition 5.1. (PAC Learning 1) A hypothesis class His called PAC-learnable if there exists a classifier

h* ki
€ H depending on n random samples (Xi, Yi), i € {1, .. X, ¥nd a polynomial function p(x, y, z, w),
such that foranye>0and &

€(0,1),foralldistributionson, p(RA(") . Lnef HR M+ e) s 1 -5

holds whenever n > p(l/s,ﬂl/é, size(X), size(H)). We also say that H is efficiently PAC-learnable, if
the algorithm that produces h” from the data runs in time polynomial in 1/€, 1/8, size(
X)) and size(H).

Remark 5.2. In our context, to say that an algorithm “runs in time p(n)” means that the number of steps,

with respect to some suitable model of computation, is bounded by p(n). Note that in this definition we
disregard specific constants in the lower bound on n, but only require that it is polynomial. In computer
science, polynomial time or space is considered efficient, while problems that require exponential time
and/or space to solve are considered inefficient. For example, sorting n numbers can be performed in
O(n log(n)) operations and is efficient, while it is not known if finding the shortest route through n cities
(the Traveling Salesman Problem) can be solved in a number of computational steps that is polynomial in
n. This is the subject of the famous P vs NP conjecture.

In the case of a finite hypothesis space

H with K elements, we have seen that H is PAC-learnable,
since n> O(e2 logK) + logallS

2 2

which is polynomial in all the relevant parameters.

Generalization bounds and noise

We conclude by commenting briefly on an improvement of the generalization bound (5.1) when incor-
porating assumptions on the distribution. While the bound (5.1) incorporates the number of samples and
thesizeof ,itgpesnottakeintoaccountpropertiesofthedistribution,forexample,theuncertainty
e=Y f(X),Wheref$X)=E[Y
|X] is the regression function. Let y € (0, 1/2] and assume that

Fx)-1/3 =y

almost surely. This condition is known as Massart’s noise condition. If y = 1/2, then f(X) is either 1 or 0 and
we are in the deterministic case, where Y is completely determined by X. If, on the other hand,

Y . . .
= 0, then we are barely glacing any restrictions on f(X), and we are allowing for the case where (X)

is close to 0, and hence where is almost independent of X.
Theorem 5.3. Let H = h{ 1.+, h K be a finite dictionary and assume that  hg H , where h*is the
Bayes classifier. Then for 8%0,1),

T K
me»_Rm*;ﬂ%gﬁ .1 5.

! In some references, such as the book “Foundations of Machine Learning” by Mohri, Rostamizadeh and Talwalkar, this

version of PAC learning is called Agnostic PAC Learning.



In the PAC learning context, we see that

g

log (K) + log(¥9))

n>
= yEe

<

samples are necessary to approximate the Bayes classifier up to a factor of € with confidence1 5. We

also see here that the number of samples needed increases asy
- 0, reflecting the fact that in the presence
of high uncertainty, more observations are needed than if we have low uncertainty. The proof of this result

relies on a concentration of measure f%é%%@}j}ﬁl}éaMﬂaﬁﬂﬁ(}gﬁ;jﬂﬁé@(ﬂﬁﬁsca“ed Bernstein’s inequality.
Th(ﬁorgmgh@(&qrnstein, I, Var( .Thenfort>,
SInequality).{Z}nii=1 E[Zi]=0)withZedBaiEh zi 0
. —)<e.
- nt22(02+ct/3) - Zi>t
{h*x(Xi 6
We outline the idea of the proof. The proof peoggeds by defining the random variables

1-1{h(X 6

Zih) =1 i) =Yiy
for each b Y . The average and expectation of these random variables is then
1
R™() _ gn"0=Zi(h),ni=1
()=E[zi(h)].
—h
Based on this, one gets a bound R(h R
1
RG) _*R(h* gn(Zhn (zitr )]
i) - B =i=EZth)n
< 1 (5.2)
wl(i()hé Hi=1
Z 1T
[i()]<2=:
. i . Z h C .
The random variablesz i (h) are centred, satisfy <P(()= *e}%c%iwe can bound the variance by
VarZi(h))=Var( Zig) h XhX .. o2m.

We can now apply Bernstein’s inequality to the probability that the sum (5.2) exceeds a certain value for
each individual h, and use a union bound to get a corresponding bound for the maximum that involves the

variancec2(h").Usingthepropertythath * . o
€ H, one can also derive a lower bound on the excess risk in

terms of the variance, and hence combine both bounds to get the desired result.

Notes






Learning Shapes

So far we have considered learning with finite dictionaries of classifiers H. We now illustrate an example

where
H is not finite, and show how PAC-learnability and generalization bounds can be derived in this
setting. We then move on to the more general framework of Rademacher complexity.

Learning Rectangles

Assume that our data describes a rectangle: the input space X is a subset of R2, and the function

f: 0, XistheihdlcatorfunctionofaclosedrectangleB,sothatforanypointx,f(x)=1ifxis

in the rectangle, and 0 if not. Suppose that all we have access to is a random sample of labelled points,
xi§hi1,...,n

1 (see Figure 6.1, left panel).

4.5 » 4.5 »
4.0 4.0
3.5 ® » 3.5 » »
] | ]
3.0 1 » 3.0 »
[ ] ]
2.5 1 » » 00 2.5 LA
[ ] ]
204 o 2.0{ o
1.5 ® 1.5 | °
a
1.0 | » 1.0 |
s® o ® 2® » »
0.5 | s 0.5 ] »
-05 00 05 10 15 20 25 30 35 -05 00 05 10 15 20 25 30 35

Figure 6.1: The blue points are in the true rectangle, while the red points are outside of it. The smaller blue
rectangle represents the computed classifier h”, while the shaded are corresponds to the true rectangle
that generated the original labelling.

We compute a candidate h~ : R2

—{0, 1} as the indicator function of the smallest enclosing rectangle
of the point with label 1 (i.e., the blue points in Figure 6.1). It is clear that if we have lots of sampled
points, then we should get a good approximation to the “true” rectangle that generated the data, while
with few points this is not possible. How can¥ve quantify t$? X3t 0(and &

€ (0,1) be given, and let
Xbearandompointwithassociatedlabel .ménmﬁlmmép?mlﬁlb(ypﬁeasureof
the true rectangle, while
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is the risk of h~.Wewouldliketofindoutthenumberofsamplesthatwouldensure

P(Hh <g 4 _ 8

First, note that since the rectangle defined b%is always contained in the true rectangle that we would
liketodiscover,wecanonlygetfalsenegativesfromh " (thatis, |fhxthenxq|gtheiruerectangle
buttheremaybepoints intietruerectangleforwhichhx ).Hence,
)=0
RR) = P(h"(X)
6= (X)) X )=1)
=P

- P R -
T(h" " (X)=n1,f(X)=0")+P(h " (X)=0(=0=(h(X)=0,f(X)=1).
ar _ R . . (A")
%f%v&dgnote byB _— :h”FEX) _1 smallest enclosing rectangle, then the risk R (h

can be described more geometrically as }the computed

RG) =Pk eB\B"),

namely the probability of an input being in the true rectangle but not in the computed one.

Now lete >0and & )
€(0,1)begiven.IfP(X EB)<¢,thenclearlyalsoR(h *)<e.Assume

therefore that P(X
€ B) > €. Denote by Ri, i € {1,2,3,4}, the smallest sub-rectangles or B with
P(X
€ Ri) > €/4 that bound each of the four sides of B, respectively (see Figure 6.2). We could, for
example, start with the whole rectangle and move one of its sides towards the opposite side for as long as
the measure is not less than €/4.

4.5 ®
4.0 1
3.5 A a

3.0 ®

2.5 4 > T A
2.0 4

1.5] L]

1.0 |

0.5 |

05 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5

Figure 6.2: Four boundary regions with probability mass €/4 each.

Denote by R © i the rectangles with their inward-facing sides removed. Then clearly the probability

measure of the union of these setsisPX U g o )E R © ii<,sincethemeasureofeachoftheiisatmost

g/4. If the computed rectangle B” intersects all the Ri, then

PX e pp)=P XecUiRiB e



We now need to show that the probability t?aé R ?I%eAs. notintersect all the rectangles is small:

U

P(FB R = g)p NRi= ®)}Z4Si:1P(BAﬂRi®),

where we used the union bound. The probability that B does not intersect one of the rectangles Ri, each of
which has probability mass €/4, is equal to the probability that the n randomly sampled points that

gave rise to B” do not fall in Ri. For each of these points, the probability of not falling into Ri is at most
n

P(ABA Ri= @ 41 /4 de-"4

where we used the inequality 1_ % o X Setting the righ-hand side to ® we conclude that if

:—Ls/4,sotheprobabilitythatnoneofthepointsfallsinto is €/4).Hend®, (1 —

4
n, Elog 045

thenR () € holds with probability at least 1 §.

2.5
- Average approximation error === Computed approximation error
0.25 4 == Theoretical bound
2.0
0.20 |
1.5
0.15 |
1.0
0.10 ]
0.5
0.05 ]
0.00 0-0 i
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 6.3: The left graphs shows theaverage risk as n increases. The right right graph shows the risk
bound € when given a confidence 1 5 = 0.99blue curve), and the theoretical generalization bound as

derived in the example.

Remark 6.1. Note that we did not make any assumptions on the probability distribution when deriving the
bound on n in the rectangle-learning example. If the distribution is absolutely continuous with respect to
the Lebesgue measure on R2, then we could have required the probability measures of the rectangles to
be exactly €/4, but the way the proof is written it also applies to distributions that are not supported on all
of R2, such as the uniform distribution on a compact subset of R2 that may or may not cover the area of B,

or a discrete distribution supported on countably many points. The requirement P(X )
€ B) > ¢ still

ensures that enough probability mass is contained within the confines of B for the argument to work. We
may, however, end up looking at degenerate cases where, for example, all the probability mass is on an
edge, one of the rectangles Ri is an edge or the whole of B, etc. Note that in such cases the intuitive view

of the generalization risk as the “area” of the complement B \B “isnolongeraccurate!Tnpracticewewill

only consider distributions that are natural to the situation under consideration.
Notes
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Rademacher Complexity

The key to deriving generalization bounds for sets of classifiers py was to bound the maximum possible
difference between the empirical risk and its expected value,

[
f@ﬂhn1-RWL$up rthuwa Y} - E“HNX”%‘“}l Q)
Hl 1= ]

Forfinite H, the probability that this quantity exceeds a given can be bounded using the union bound,

but this approach does not work for infinite sets. We therefore derive a different method that is based on

intrinsic complexity measures of H. The first such measure that we will encounter is the Rademacher

complexity.

Rademacher Complexity

In the following, we write Zi = X Y%i{ 1 ,...,Nn 1 forthe setof (random) pairs of samples and
labelsin =,withpojntsin Z denoted by Z = (X, ) Toezemth weassociateafunction
g: 0%by_)se tmg{ )

g2 =0 1h(g Y,

and we denote the class of these functions by g 1 Using this notation, we get

I
fépkqh)h - RV psyp d; | | g(ZiL g [8@)]; |
| Yni=1
We will bound this expression in terms of a of a property of the séi , the Rademacher complexity. For what
follows, we say that a random variable has the Rademacher distribution if it takes the values 1 or -1 with
probability 1/2 each. When an expression potentially depends on different random quantities,
for example random variables X and Y, we write EX to denote the expectation with respect to only X.

Definition 7.1. (Rademacher Complexity) Let
G be a class of real-valued functions on Z. Let 0 =

@%. .z, on) be arandom vector, such that the oi are independent Rademacher random variables, and let
Aphe empirical Rademacher complexity of the family of f ctlons
. _ [ Isup
R Z(@ =E;, -
€G

=1 ] G with respect to z is defined

e could, and will eventually, use any other loss function.
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The Rademacher complexity is the expectation:

RO=EZ[nGR"Z(G)].(7.2)

Remark 7.2. Note that the expected value in (7.1) is only over the random signs, and that the point z

is fixed. Itis only in (7.2) that we replace the point by a random vector Z = (Z1,...,Zn) and take
the expectation. As the distribution of o is discrete, we could also rewrite the empirical Rademacher

complexity as average:

3(Q)nlsupoai-g(zi).noE{-ngEG1,1i=1
2n

n

R"z(G =
}

Note also that the definition works for any set of real-vaﬂtueg(: functions g, not only those that arise from
the loss function applied to a classifier. In the literatureth eire various variations on the notion of
Rademacher complexity. It can be defined simply for sets: Givena set S

C Rn, the Rademacher
complexity of S is defined as

L i :

(S)=Eosupaixi. (7.3)

é@srngtionisaspecialcase:whenS 1): {§ R G
=(g(z),...,8(zng z()= € G}, then we have
B¢®g this notion of complexity, we can derive the followin un .
Thebgrem 7.3.Let § E(pO, 1)ybe given. Tﬁ&iébmﬁ@ﬁ\gibﬂ%g%ﬁg&i(GHﬂFl
sup' Elg@)]_ — — 1o (7.0
9E G

Before going into the proof, we list some examples.

nlEgoig(zi)=0,ni=1
Examplenbd4.h consistsq;ionlyomef}lncti([aliw].Thenfora%(ypz)int(zl,...,zn) EZn,
the values g(@&i) = 1 la(xi) 3 yi form a fixed 0-1 vector . The empirical Rademacher complexity is

since for each i, g(zi) and
vectors.

—g(zi) appear an equal number of times when averaging over all possible sign

Example 7.5. Let
Hbethesetofallbinaryclassifiers.Itfollowsthatforany(zi,...,z) Znn € ,theset
of vectors (g(z1), ..., g(zn)) for g
€ G runs through all binary 0-1 vectors. The empirical Rademacher
complexity of the set of functions -1
Gis ﬁwugtbe,jsa_mf agthe Rademacher complexity of the hypercube
S=[0,1]n as a set. Note that for each sign vHect%)r o) er] can alwgys pick outé fuzn

9y e s ey

th,ongsuchthatg(z,):1|f0|:1andg(z|):0.f§|;(,an6dt2|?wWlm|zesthesum|o|g(2|).Fromthlsobservatlon|t|snothardtocc
Example7.6.Wewillseethatforafiniteset andnlzk ,

1z ,wegetthebound S n ,

whereT = maxge o/ 5 ndq &(z)2This bound is knownas ~Massart’s Lemma.



Example 7.7. The Rademacher complexity of a set S equals the Rademacher complexity of the convex hull
of S. For example, the Rademacher complexity of the hypercube [0, 1]n equals the Ra

Vdemachercomplexifyofthesetofitsvenvrtices.Sincethereare2vertices,Example7.6givesthebound2log(2)

(weusedthatr=nhere).WesawinExample7.5thattheexactvalueis1/2.

The proof of Theorem 7.3 depends on yet another concentration of measure inequality for averages of
random variables, namely McD|armid’s inequalitf.
Theorfm 7.8 Q’Pfclj’ar%ld S Inequahty) Let

}zi=6 i {i}beasetoﬂndependentrandomvariablesdeﬁnedon

aspace |f(z,...,zi,...,zn)—1(z,. i Ci. _
Z letci RbeconstantSW|th| 0,andl t Z—Rbeafunctionsuchthatforall

ARdrforall t > 0, the following inequality holds:

2t2

111 - —hA
P(f(z1,...,Z) E[f(z1,...,2)]+1) < eZi=1i°2
1% (7.5)
T
_ Pn > En )]b) < e

Using the union bauidavie, can combine[thezwg ineggalities (7.5) to one inequality for the absolute

value If(z1, ..., Zn) - E[f(Z1, ..., Zn)]|, with an additional factor of 2 in front of the exponential
bound. Note that McDiarmid’s inequality contaifs Hoeffding’s inequality as a special case when fis the

average.
Proof of Theorem 7.3. Define the function

©e1,....2n=sup' Elg @] . Ssniglz)’
g EG n

Then fori €{1,6,n}andz="izi,andusingthefactthatthedifferenceofsupremaisnotbiggerthan
the supremum of a difference, we get

OG1L,...,21,...,30 OF LoewnZisenzn) sup%(gm 8@ < 7

from which we conclude that

1

|(D(Z:|.,..., .,2n OE 1,. zn? <o

The function ® thus satisfies the conditions of McDiarmid’s inequality withCi = 1/n, and from this
inequality we get

P ) oz -~..,Z yee, 2 )]t

<-2n21Etnln)e (o [ )l

Setting the right-hand bound ® 4 resolving foft  » We conclude that with probability at least 1 _ §,

V log (B)
0

The last, and crucial, step is to bound the expected value on the right-hand side with the Rademacher

®(z1,...,Zng E[OZ1,...,Z0+

complexity. The idea is to introduce identical but independent copies Z'i of the random variables Zi.
DenotebyZandZ'thevectorsofrandomvariablesZandZ’ii,respectively.Wewilluserepeatedlythe



fact that if f(Z’) only depends on the random variables in Z’, then f(Z") = E “Z[f(Z )], that is we can pull an
expression “into the expectation” if the terms involved are independent of the variables over which

the expectation is taken. We will also use the linearity of expectation repeatedly without explicitly saying
so. We can then set

jogl (2)1n1Z

Ez[Og1,...,Z
[sup(E[g([2)]-gZyn]()gEGi=1)]n11ynZ
=E — —
[supE"(Z[g(Zi)-g(Zi)gEGnYni=1i=1])]n115nZ
= E — -
[supE"[Zg(Zi)-gZnyn]]()gEGi=1i=1n1ZE"
<E -

_ [Zsup(g(zi)-g(Z3nl))gEGi=1n1E"Z,Zsup(g(Zi)-g(Zi)),g EGni=1

where for the inequality we used the fact that the sup of an expectation is not more than the expectation
of the sup. We next use an idea known as symmetrization. The key observation is that each summand

e

gz

- g(Zi) is just as likely to be positive as it is to be negative. In other words, if we replace

-gZi)withit h
generally,wecanpi ?nggg@;;géz%%lﬁﬁﬂlg | {glkthenth @@@%Wfé@ﬂ%’)?é%ﬁwme
1, and will tHek h
2

Now we use a “sheep counting trick”2, and sum these $efime,oversalpResiats-sign patterns, dividing by
the total number of sign patterns, n:

& (-
Zn(g(Z’i)—(=1
[ 1supgni _ )
Ez.Z G E%Ll}ngEGn i=1]ilyn=E'o,Z, Z' supoi(g(zi)- gé%l,gEGnizl

][ZI.Et]n g(zZi))<E'o,Z's
where for the last equality we simply rewrote the average as an expectation over a vector of Rademacher

random variables. We_Lgan no té)und the supremum of the differences by the difference of suprema in
order to get Sng
[upoig(Zi)gEGni=1Y1]n+Eo,Zsup(-oig(Zi))gEGni=1

EczzZ' - o'iB&) Rn (G).—

tWhen a shepherd wants to count her sheep, she counts the legs and divides the result by four.



The last equality shows why we averaged over all sign vectors: by symmetry, averaging over _Gis the
L]

same as averaging over O.

The empirical Rademacher complexity

ﬁAzisafunctionof(zl,...,zn),andbythesameargumentas
for the @ function in the proof of Theorem 7.3 one can show that if z” arises from z by changing z to z'i i,
then IR G-R G| <,

" R
therefore apply McDiarmid’s inequality to the random variable  p 7 () to conclude that
W d) Rz (G

log (B VR™RG)Z(G)<n()+(7.6)
2
with probability at least 1
- &. One can combine (7.6) with (7.4) using the union bound to get a
generalization bound analogous to (7.4) but in terms of the empirical Rademacher complexity (with
slightly different parameters).

To conclude, note that the inequalities (7.4) and (7.6) are one-sided inequalities: they bound a
difference but not the absolute value of this difference. These can easily be adapted to give a bound on the
supremum of the absolute difference

IR" (h)-R(h)|.AsaconsequenceofExample7.5weseethatwhen
considering the set of all binary classifiers, we do not get a generalization bound that converges to 0 as
n usingtheRademachercomplexitybound.

Notes






VC Theory

As usual we operate on a pair of input-output spaces 7 = x x yWwithy = 1 _1 1 Let H beasetof
classifiers with associated set

6 } G={87 - (Of. 8@2=1{hl)= v,h eH}.
We saw that we could bound the maximum difference between the generalization risk R(h) and the
gmpirical risk R"(h) of a classifier using the Rademacher complexity (h)

he H 2n

Instead of considering the set G, we can also consider the Rademacher complexity of H itself. For what
follows, assume that the classifiers in {- 1}

Hé?’hﬁ]igeg.aﬂeﬁwjefﬂ?ademachercomplexities of yandg satisfyR n (d = %Rn (H).

The proof depends on writing 1 6 1} {h(x)=y =(1 yh(x))/2,andisleftasanexercise.Thedefinition

of Rademacher complexity involved taking the expectation with respect to a distribution on the space
z
that we do not know. We saw, however, that in some examples we could bound this expectation in a way
that does not depend on the distribution. We next develop this idea in a more principled way, deriving
generalization bounds in terms of parameters of the set of classifiers
H that do not make reference to
the underlying distribution. The theory is named after Vladimir Vapnik and Alexey Chervonenkis, who

R ERBRGABNKis Theory

In binary classification, a classifier h can take at most two possible values on a fixed input. Denote by x=
(X,.,) n1..xn an-tupkeofiputsandset

h(x):=(( hx1),...,h(0)) € {4, J} n
for the corresponding vector of values of the classifier. For any fixed x € Xn, we could get up to 2n
different values h(x) as h runs through

H. Note that his is a finite bound even if the set H is infinite! A
possible classification h(x) is called a dichotomy and one way to measure the expressiveness or richness

Plf\%ﬁfo%gl?c?EMﬁhe possible dichotomies.
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Example 8.2. Let y = R and let |y be the set of indicator functions of closed half-lines: for each a <R,

_{1

X X
hi (x >a, <
(x) 1 x<a -1 x>

a.
a

Given two distinct samples,
canfind h

} {x,x,therearedpossibledichotomies:foreachpattern&{-11}212p,we

€ H such that the tuple (h(x1), h(x2)) = p. For three distinct points {x1, x2, x3} C R this is
no longer possible. If we assume, for example, that x1 < x2 < x3, then any classifier h with h(x1) =

-1
and h(x2) = 1 will automatically also satisfy h(x3) = 1.
Clearly,if
H consists of only one element, then for every x € X n there is only one possible dichotomy,
while if

H consists of all classifiers then there@res2nypossible dichotomies if the entries of x are distinct.
Somewhere in between these two extreme cases, the number of dichotomies may depend on x in more

intricate ways. n nlé\h (x x ) Ry e
Definition 8,3, Let H(n) = %
NO?G%hd’[lTﬁIS function depends only on tfie’Sét . We can use it to bound the Rademacher complexity

BPeasetarlassifgesh . ThegrowthfunctionlMHisdefingdas
G. The bound depends qg?ﬁg Uﬁ@l")‘ﬁ' Q%s_sirt’s Lemma, which is derived in
l ’

the Exercises. Recall that the Rademacher compléxity of a set S
C Rnis defined as 1
R(S)= o
where ¢ = (o1,...,0n)savectorofi.i.d. Rademacher random variables (P (oi=+1)= P(oi =
- 1) =1/mng = (x1,n).,x VICRnK2log(K),n
Lemma 8.4. (Massart’s Lemma) If § = {xl,...,x consists of K elements, then
. -
-S).
VR -

isboundedbyH.
wherer =max&€ s ||x|| and ||x|[n:x

i=1 xi
Theorem 8.5. The Rademacher complexity of EUCh that

- H)X);'zlog(nn (n)

Proof. Considerafixedtuple x=(% ,...,R)
M dTpC Ry
The vectors (h(x1),..., h(xn)) all have norm, andfhe claim follows from Massart’s Lemma. O

Combining this with (8.1) we immediately arrive at the following bound.

Corollary 8.6. Forall = H

R(h) ¢ R™()+Y f\lo—g(”mn} +V logéﬁ) (82)



Let |y beasetofclassifiersand S = £ ,} in:1C x asetofinputs. Then S is shatteredby y,if

|{h(x)h =2n,

that is, if all dichotomies are possible. SHI

Example 8.7. If
H is the set of all binary classifiers and all the samples in S are distinct, then S is
shattered by
H.
Example 8.8. If

H ={h1, h2} consists of only two classifiers, one of which is constant 1 and the other
is constant 0, then a subset S
- gofxsamples is shattered by H if and only if |S| = 1, that is, we only

look at one sample. Npey o

There fsalsen SHBSRIAIES n increases, it can become harder to find a subset that can be shattered. While in

vzt haheaabeshatteredbyHifandonlyif
Hconsistsofallbinaryclassifierswealwayshavell nH(n)=2,inthecasewhereH

consists of indicator functions of half-lines we saw that three distinct points on the line cannot be

shattered.
The maximum possible n such that a subset of n points can be shattered is the VC dimension.

Efaﬁnition 8.9.The Vapnik-Chern%pm Q/%ggg}qp%om@ﬁa@gt:oj ﬁlass}ifiers
is
If VC( d

H)=d,thenthereexistsasetdf samplesthatcanbeshatteredbyH:allpossibledichotomies
occur when applying classifiers in

VC( )Hig4hese samples.Notethatthisdoesnotmean,however, thatall

sets of n samples can be shattered by
H. log (N p (&)
We will see that if H()} dlog d ’

\}fivﬂ?cﬁwvgﬂm%n§éopeﬁﬂ?§¥eﬁ’?g I%%ulﬂ'% (8.2) in terms of the VE dimension. We will then study plenty of

examples (including practical ones) where we can compute or bound the VC dimension.

Notes






The VC Inequality

The VC dimension of a hypothesis set 4 is the maximal cardinality of a subset of the input space y that
le shattered by

VC() =pngx {neNT (n)=2n
where the growth function I counts the number of possible dichotomies,
H(n)

0 {hx1),...,h(n)):h H|

€ X |
n)=max((xn

The VC dimension is a comlla-ljlgagorg]l qu(éntity that depends only on H. It acts as a surrogate for cardinality

when dealing with infinite sets.

VC dimension of families of sets

The notion of VC dimension was defined for classes of functions H. Equivalently, we can identify each h

withtheindicatorfunctionofasetA afdcnsiderthesetofsets
A={ACX: h3=1 & x &

%’v?r) \?vélél?n?/%%t A shatters Sif every subset of S (including the empty set) can be
obtained by intersecting S with eléfients of

(A NS:AEAL p(S):= {5':S'C )
In other words, we can use the cﬁlection to select any subset of . It should be clear that if S is shattered

by S
A, then sois any subset of . In this context, the growth function is define§analogously,

I_lA(n):max‘Hﬁn SiAe A}%Xl’ﬁzr},

as the maximal number of subsets of a set ofn thatcan be selected usingA.The VC dimension
cardinality of the set system

A%A ) Ve( ) =max{ e N:M(n=2n

n

Note that the VC dimension is monotone in the sense that it does not decrease when
Ais enlarged. One of
the most important results in VC theory is a bound on 1

A(n) in terms of the VC dimension. This result is
usually attributed to Sauer (who credits Perles) and Shelah, but was discovered independently by Vapnik

& Chervonenkis.
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Lemma9.1. IfVC(p) = d,thenfor n 5 d,

nA(n)Zd()snsuée@r)dd,
n+d
Proof. The proof of the first inequality is by inductionon . Ifd =0and n =0, then I A(0) = 1

(only the empty set can be considered) and the bound is vdlid. The statement is also easily verified for
n=1andd

n>0
< x <1.Assumenowthat andd>0,andthatthestatementholdsforthepairs(d,n-1)
and (d

S
€ _1,n-1).Let beasubsetwith|S|=,suchthat[{A N S:AE A}|=TA(n),and
selectanarbitraryelement .Considerthesets )
A=PRSRM eal,A m{AernePA U {s} € AL.

Note that

X5 ve(a) < d, and VC(A™) < VC(A) -1 = d - 1.
The first inequality follows from the fact that if
A’shatters a set T, then so does A. The second inequality
follows from the fact that if a set T is shattered by
A”, then the set T U {s}is shattered by A.
Consider the map [ANS:AEAI-A BIA EA'l=(AN S\[AESA],
AS—->7ANS\§}

This map is one-to-one, exa&ph in thé case . For such A,both% 6A and /:\~=@ [s1€A
where hold, and therefore A 3 A
NS="but Ns

An s\{A N ssf )

It follows that

[{ANS:AEAIF |ANS$FA € AfANns:A € A''}

=TA?S(SR{A EAF{lAﬁ(Ss \{ }D: A € A"'}].

By the induction hypothesis,

( ):AE A'}Ng(n
|{An§{s} £ Sd()-1)sn-1,ii

I{Aﬂ(§{s}):% At} < r{leold_l()_j_)sn—ln,iﬁo

so that combining the terms we get

[{ANS: A e A}Eﬂsi(n—ii=j)1(+?]‘1zd()nn:.i—lii=o



For the second claimed inequality, we extend the sum to  and multiply each summand by ( n/d)% lto
obtain

yd(Onyn()d-isn(n)i

()idi=0i=0nyn()(dndi=

(dn)(ini=0)ddn(=1+<dn en 4
B - Jd
1+x
where we used the inequality < €xat theend. 0

The VC Inequality

A central result in statistical learning is an inequality that relates the VC dimension of a set of classifiers to
the difference between the empirical and the generalization risk.

Theorem 9.2. (VC Inequality)Let H be a set of classifiers N: X = { _1,3} with VC dimension
VC(H) = d,andlet (0, 1) then with probability at least 1-

supR(hy _ R (M) @ = (logieng 5 log (6)
he H F

Proof. InCorollary 8.6, Lecture 8, we saw th@tS

v
supR(h) _ ﬁ’\(h) MH{H})+ log (®) .
he H n 7
The claim now follows directly from Lemma 9.1. 0

We remark that the bounds here were all stated as one-sided bounds: that is, they are stated as bounds

on the difference R(h) -R"(h)andnot hejb%)lutevalueofthedifference.Wecangettwo-sidedbounds
by making adjustments in the derivation of bounds using the Rademacher complexity (using the second
case of McDiarmid’s inequality) and arrive at thegdﬁowing bound, which holds with probability at least

1

- V+ —
~ o A~ logiind  log (B
&5 h sup ‘?(h) R™(h) (lognn ogéI )

Note that the only difference is the factor of /&which is a consequence of combining two one-sided
inequalities to one two-sided inequality using the union bound.

Rectangle learning revisited

: _ D2 1 otherwisel.
Let Hbe’[hesetoffunctionsthattakethevalue10n rectangles in the plane y = R*and _ - OfNerwise

The question is:
1

Depending on context, we will consider | as consisting of functions into {0,1} or into (-11,, this does not alter any of

the results involving the VC dimension.

}



Given n, can we find a configuration of n points in the plane such that for any labelling we can find a
rectangle containing those points labelled with 1?

This is clearly possible when n = 2 (just choose two distinct points) and n = 3 (choose three points

that form a triangle such as 4). For n = 4 there are 16 possible labellings, and if we arrange the points in

diamond form
, then all labellings can be captured by rectangles (try this!). For n = 5 this is no longer
possible: take the smallest enclosing rectangle of five points
{x 5i}i=1.Thisrectanglewillcontain(atleast)
one of the xi on each boundary (if not, we could make it smaller). If each xi, i
€{1,...,4} liesona
different boundary, we can assign 1 to these points and

-1 to x5. This dichotomy cannot be realized by a
rectangle: any rectangle containing °
11 4}i=1mystalsocontaintheirsmallestenclosingrectangle,hence
also x5. 1

+1 +1 °
+1

Figure 9.1: A dichotomy that is not captured by rectangles.

Notes
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General Loss Functions

So far we looked at the problem of binary classification. We considered aset | i« ‘| assifiers hX -

where Y ’
Y was a set with two elements ({-1, 1} or {0, 1}, for example). Given a distribution onX x

we considered the generalizatio? risk Y
RO=E [ihx) s Y H=P((h X)), (10.1)
and the empirical risk,
n 1(h)5;n1{h(Xi=n6 Yiy, (10.2)
X,Y

. . A ) iEe {...,n .
whichisbasedonasequenceofrandomobservations i i, A i 1. For each set of realizations

{(xi, yi)} one can (in principle) construct a classifier E(ﬂ tlzat minimizes the empirical risk (10.2). We
areultimatelyinterestedinthegeneralizationrisk andnottheem piricalriskR " (h ") (thiswouldjust
tell us something about how well our classifier works on the training data). Specifically, we are interested

in how close the risk R(h") is to the optimal generalization risk R(h") =infh EHR(h). To analyse this, we

split the difference into two parts: e B
RO inf Rt < ROR~(h~)+R (b~ fof R(D)

2 “(h)
i |

The term within the sup to be bounded is just the difference between the average of i.i.d. random variables
and their expectation. To bound this difference we used:

IN

IN

« Hoeffding’s or Bernstein’s inequality and the union bound for finite

H, to obtain a bound in terms
of log(
[HIT);
« McDiarmid’s inequality applied directly to the supremum and symmetrization to obtain a bound in
terms of the Rademacher complexity.
The Rademacher complexity could then be bounded, via Massart’s inequality, in terms of the growth

function of H, which in turn could be bounded again, via the Sauer-Shelah Lemma, in terms of the VC

dimension of 6
H. It is natural to ask how much of this depends on the fact that we used binary classification
and the unit loss 1
{h(X) =Y }, and to what extent these bounds generalize to other types of classifiers
and loss functions.
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General Loss Functions

Consider a set of function H={h:X = Y}with Y = [-1, 1] (or any other subset of R), and a loss
function L:
Y x Y = R>0. Besides the unit-loss that we studied so far, examples include:
« Lx,y)=(x
-Y)2 (quadratic loss);
« L(x,y)=
Ix =yl (" 1-loss);
« L(x,y)=
Ix = ylp (" p-loss);

* L(x,y) = log(1 + e—xy) (log-loses). 11] Y & [-11]

Sometimes the loss function is scaled to eﬁﬁJrEe tha[t itd_i(s Iﬁ ;1})c(ertairvange. For example, for the quadratic

l—%iiﬁléfb,l]ifh(x)[ and .Thegeneralizationriskisdefinedas
while the empirical risk is

R 1(h)§nll_(h(Xi),Yi).:1

Just as in the binary case with unit loss, we denote by h a classifier with optimal generalization risk in Ho
andbyh"~aminimizerofR ~ (h).Alsoasinthebinarycdseswécanbound
| 1 2sup- | R"(h)R(h) | .hEH

RM) _ R(h)
Consider the set of functions [0, 1]: 8(2) = L(h(x), )
.
L H E{87 —y - (z1,...,zn)
This plays the role of the set G defined in Lecture 6. For ,Withzi = (xi,yi), we can

define the empirical Rademachemsomplexity

[ S Inlo sup oig(zi),gEL © Hni=1
Rzl o y=E _

and the Rademacher complexity as [)=ER"ZZ(L ° H.

Rn(L o H

Assuming that L(x, y) € [0, 1] (which we can by scaling the loss function accordingly) one can use the

McDiarmid’s bounded difference inequality and the same symmetrisation argument as in the binary case

to derive the bound V<2R(° Hlog(2/dnL)+,2n
) sup FIE”(h)_ R(h) | —H =
e H

whichholdswithprobabilityatleast Farfinitesetsofclassifiers same {h1,..., hH&we getthe
cardinality bounds as in the binary case.



Theorem 10.1. Let = p ... hK be a set of classifiers h: 11],andlet L bealoss
A ¥ L rhen” X=>1-3
function taking values in[0L]
V 2 log(K
Rnll o ! 218K

Proof. Fix z = (z1,...,zn). Then by Massart’s Lemma (Lemma 8.4 in Lecture 8), the empirical Rademacher
complexity is bounded by

AV
A 2 log(K
Ro2l oy r oot
n
where
S r=sup{|x|l:'x & 3, S=g13.,.--.8(m):g LoH}.
V—
Sincebyassumption &@(ﬁherEéhl(ﬁoll,ostytz{IQnéth&&pectation
over Z. S O
For infinite

H we cannot repeat the arguments used in the case of binary classifiers with unit loss.
The bounds based on growth function and VC dimension depend on the fact that the number of possible
dichotomies is finite and this is no longer the case when considering functions h with infinite range. One
way of dealing with such a situation is to approximate an infinite set by a finite set in such a way, that
every element of the infinite set is close to a point in the finite subset.

Notes
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Covering Numbers

In this lecture we consider hypothesis py = {hy =[-1, 1]}andaloss function L ;

set [0, 1]. Define the set of functions X = L
L o w87 5 [0, 1] g(2)= (Lhx,y) .

This set plays the role of the set g defined in Lecture 6.Fer ( Z1,...,ZN), withzi = (xi,yi), we can
define the empirical Rademacher complexity as

~ _ [g€ 1 H n

R'zZL o }=Eo Su%]nclg(zm ’

ol,...,o

where the expectation is over all sign vector ¢ = ( : ) with independent i that satisfy P{o|

+1 _ 1 Rademacher complexity is defined as as
}=P{oi=1=1/2.The

Rn(L o H=EZ [FQ“Z(L
wheretheexpectationisoveralln-tuplesZ 1 n),whefdZZ (Xi;¥i).Aginthecase of binary classification with unit

loss, one can use McDiarmid’s bounded difference inequality and a
symmetrisation argument to derive the bound

V)+ T
SUPT (h)_ R(h) |<2Rr(L o %,
h,...,hK
whichholdswithprobabilityatleast .Fokinfte of binanH 1 }, the arguments used in the case

classification carry over seamlessly.

Theorem11.1.Lety _ th1,...,hK be aset of functionsh : x —, [ _ 11],and let L bea loss function
taking values in [0, .1T]hen
v 2 log(K)
Rn(L o H)s ——
n
Proof. Fix z = (z1,...,zn). Then by Massart’s Lemma (Lemma 8.4 in Lecture 8), the empirical Rademacher
complexity is bounded by
\/ .
2 log(K)

IQAZlLOH)sr n
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where

c r=sugyfx S } S$E(z1),...,82n g L oy,
Sincebyassumption, anditfekesu hfdlléﬂ/@b\l@k?hkl’héXerctation

over Z. oy [
For infinite

H, we cannot repeat the arguments that lead to the VC inequality in the binary classification
case, since these arguments were based on the fact that even for infinite
H, the number of possible
dichotomies is finite. This limitation can be circumvented by approximating L

ring Num

r o H by a finite subset that
|s su menl% dense. t?l%s %eads to the concept of covering numbers.

Recall that a metricon a set Sis a function d: S

x =y, d(x,y) = d(y, x), and d(x, y) + d(y, 2)

<d(x, 2). A pseudo-metric is defined like a metric, but
replacing the grst condition with the looser requirement that d(x, x) = O (that is, d(x, y) = 0 may also be
possible if x = y).

Definition 11.2. Given a pseudo-metric space (S, d), an €-net is a subset T

x S = R>0 such that d(x,y) = 0 if and only if

C Ssuch that for every
X

€ Sthere exists y € T with d(x, y) < €. The covering number corresponding to S and € is the smallest
cardinality of an €-net:

HT(F ’Tdi’s@nzei-rhfet}
Example 11.3. Consider the Euclidean unit ball Bd = Bd2 =

{x € Rd: ||x||2 < 1}. We construct an €-net
T as follows. Start with an arbitrary point T =
{x1}and add points to T as follows: if T ={x1, ..., xk},
then choose a point xk+1 such that

|[xk+1 - xj|| > € for all j if possible, and add it to T, and if this is not
possible, then stop. This process termlnate e Bd2 is.bo b [esultlngs tT =
(Bd(L Sﬂsuw B R e R e S ix1. . Ghd

N vol ,€2)) = vo Xi,€
is an €-net by construction, and the distancé'be ween any two points in thls set it larger than €. Hence

e ballmRdskh AR Pk dafiys ﬁ,@daronm%gé e pomts in T are g{s%qgt Since the union of these balls is
contained in the larger ball (1 + £/2)Bd fthe unit ball by a factor of (1 + £/2)), we get the

volume ing@abtgt (x1,€7)) = (8/ 2)d volg vol((l + fe(a+ g/2d volg ),
and we get from (11.1) that

)d()d<3¢
1+ g)d _ 2
<@g = 1 -
g § ﬂwje'n%g%(\?g ailﬁ Enet of size . & 1)

Wenextconsidermesi@tL withtheempiricalldistancg(zi)|.
1
dzidq, 2=Ni=1 |gl i

We get the following bound for the empirical Rademacher complexity at  z.



Theorem 11.4. Let  pe a hypothesis set of functions taking values in_l, 1] and let L be aloss function
takingvaluesin [011 .Thenforanyz nwehave

. {ev+ 2logN(L o H% 91
R"zL o H)<infe>0 n ' .

The covering number takes over the role of VC dimension. Note that the covering number increases
as € decreases, and we get a trade-off lpetween small § and small covering number.
ProofofTheorem11.4.Fix and@n%lert]Tbeq.‘s@a({jest-netfor e(L , 24

gcl o H eET Z<:|_8) o Hd).It follows
thatforany wecanfinda suchthatd(g,g .Hepce, ) -

ﬁ“zk ° H=E[o %up lz_:zojng (zi)

SR 1¥nog’
ogi( 1298 D)
1 2i=1n . I
< E[ngu = oig(zi ) + [i(ziri=113n
€% Hn | |zZiEG+EG 1)
s E[gLégdgrzﬂl 'l g (zi)] Jsupg€EL © H%i:I%SZI
pm n yog'i (zi
. sup dz1(& g + E‘%)ax _
T gL yH & dhri=
NAL
2 log( dz e
Se+ ),
n
where we used the bound for finite sets, Theorem 11.1. Since 0 was arbitrary, this bounds holds for the
infimum among € > 0. O

The bound derived is for the set L
o H. Under a boundedness condition on the loss function, we can

Eﬂlé%%pr? ﬁdvf”ff‘fhsr ion;plixn[ybc’)fjtJTtﬁSEt in terms of that of
Rz(Lo H)s2 RxH>

wherex = (x1,...,xRnd z=(z1,...,zn)withzi (%, .

In light of this result, we conclude this section with a bolind on i R Z H )for a specific class of functions.

In what follows we denote by Bd ) . p-norm. In particular,
CRdptheunitballwithrespecttothe

BT = xRy 2d=lixfe}l
=max
B® = d:qx ! Ixil < 1

Notice that the set Bfo is a hypercube.jWe néw cqpgider x Bd and the class of functions
1
. _ d
H “{hics d. §0= £ x €Bx}
By the Holder inequality, the functions h satisfy ) ,a

Ihkp = 135 | < Il < 1.



Two functions h,g < are thus repre@ﬂlﬁgd by two vectors ,dand for their distance we have

1 .
I, g = L] Cabuxd ),

Nyn Sn| 1h(xi)-g(xi)|=n=1i=1
From the Hélder inequality we get | a<b_, X 1, and since by assumption eachxi B f,
wehave | < > I s lla - bfle|x]
MxKLland B dx(h, g)
An g-net therefore corresponds to asetT [a = bfe.

_ = b,...,b { d ad1N suchthatforevery €Bothereexists

ajsuchthat a lJJ 1C Boo

||co < €. It follows from Exercise 4.1 that the covering number is bounded by

Ox3dN(H,d1,e)<.e

We thus get the bound
R"x(H)<inf +e>0 ———
{V }2dlog(3/¢e)e .
If n is sufficiently large, then setting € =3 , We get the bound
. vnn
x()4 -

V/n<1RH<dlog(n).n
Note that the resulting bound does not depend .Itis possible to remove the logarithmic factor log (n)

on using a more sophisticated techniqué called
chaining

Notes
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Model Selection

Given an input space y , an OUTpUtSpaceY,aclassHoffunctionsh'xl-—> y , aloss function N x Y -
EmpiricalR(E}gl"Bk M in

R = .
>0, and data S {(X ni,yi)

problem }i=1, we would like to solve the

minimiz& ()= = L(h(x ,y Snii)ni=1 (A)
subﬁectto
€EH. h

This is an example of a constrained optimization problem. The function to be minimized is the

objective function and a solution h*S of (A) is chlled a minimizer. Several problems can arise when
trying to solve this minimization problem.

1. The problem (A) may be hard to solve. This can be the case if the class

His large, the number of
samples n is large, or when the objective function is not differentiable or not even continuous.

2. Do we even want to solve (A)? If the class

H is large we may find a minimizer hS that fits the data
well but does not generalize.

Since a certain generalization error is unavoidable, we can often replace (A) with a surrogate that is

computationally easier to handle and provides a solution that is close enough to the one we are looking
for. The choice of such an approximation is also informed by the choice of
H. We therefore first study the
Mo cel Seldeiat ionitable class
H, also known as model section.
Consider now the set of inputs again as a set of pairs of random variables{S(:X Y)lniii=1CXxY,

sothatﬁ“Sisarandomvariable.IdeallywewouldlikethegeneralizationriskRﬂ1“S)tobeclosetothe
Bayes risk R %, which is the best possible generalization risk. Recall the decomposition

R(h™)
-R* =R(h")-infR(h)+infR(h)-R * SS(12.1)hhE H -
= Estimationewor "~ AppfAximationerror

of the excess risk. Denote by h the minimizerof R B iny . In previous lectures we saw that

Rh3 - R(h) < 2 k() R*(h) | (12.2)
€ H _ I,
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and therefore any bound that holds for the right-hand side with high probability (such as those based on

VC dimension or covering numbers) also holds for the left-hand side. If )
His large, then the bound may

not be good enough, and in addition the minimizer h~S may be hard to compute. If, on the other hand,
His
too small, then the approximation error can be large. One way to address this issue is to consider a nested

family of sets Hk C Hk+1 of increasing complexity and to choose a k with optimal overall pg{rformance

VMe illustrate this using an example.

1. X T
Example 12.1. Let T ; ET()%E&L(Y { | |
F@ﬂ@ and let (X, Y) be a pair df random variables on R2 0, 1} such
Considertheunitlossfunction,sothatfRh) = h(X)=Y{ 6 forsomefunctionh:R2 {01, .The

. . - . e * . i we can
function fT is the Bayes classifier, ak it satisfies Foranyhypothesisset

combine (12.1) and the bound (12.2) to get R(fT) =R =0

RRAS) 2sup F(h) R (4 'inf

~ L h__R._.(h™)
EHBoundonstlmatlonelﬁ}’*ADDFOXIma'flonefror

Let Hk denote the set of indicator functions of regions bounded bys convex polygons with at most k sides
(see Figure 25.1). To bound the estimation erro® we use the fact that the VC dimension of the class of

convex k-gons is 2k + 1 (see Problem Set 4), and get the bound

(4k + 2) log(n) N log ()
n

2 (12.3)

Syp. R™(h)_ R(h)| <

k

with probability 1 - & (we simplified the logarithmic term in the first part of the bound). For the
approximation error, we look at the well-known problem of approximating the circle with a regular
polygon. The area enclosed by a regular k-gon inscribed in a circle of radius ris r2(k/2) sin(2mn/k), so

the area of the complement in the disk is

mr2
-r2(k/2)sin(2m/k)=0(k-2), (12.4)
where the equality follows from the Taylor expansion of the sine function. If the underlying probability

distribution on R2 is the uniform distribution on a larger set or can be approximated as such, then (12.4)
gives an upper bound for the approximation error (it can be less), and combined with (12.3) illustrates
the estimation-approximation trade-off. The larger the number of sides of the polygons, the smaller the
approximation error becomes, but the estimation error can become large due to overfitting. Thus even if
the unknown shape we want to learn is a circle, if the number of samples is small we may be better off
restricting to simpler models! This also has the additional advantage of saving computational cost.

There are general strategies for optimizing for k. One theoretical method is known as structural risk
minimization (SRM). In this model, the parameter k enters into the optimization problem to be solved.
An alternative, practical approach is cross-validation. In this approach, the training set S is subdivided
into a smaller training set and a validation set. In a nutshell, the ERM problem is solved for different
parameters k on the training set, and the one that performs best on the validation set is chosen.
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Figure 12.1: Learning a circle with polygons. The left panel shows the estimation error when trying to learn
the shape using polygons with at most 4 and with at most 8 sides from the data. This is the error typically
incurred by empirical risk minimization. The right panel illustrates the approximation error. This error
measures how good we can approximate the ground truth with our function class.






Part I1
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13

Optimization

“[N]Jothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

- Leonhard Euler

Mathematical optimization, traditionally also known as mathematical programming, is the theory of
optimal decision making. Other than in machine learning, optimization problems arise in a large variety of
contexts, including scheduling and logistics problems, finance, optimal control and signal processing. The

underlying mathematical problem always amounts to finding parameters that minimize (cost) or maximize

(utility) an objective function in the presence or absence of a set of constraints. In the context of machine

learning, the objective function is usually related to the empirical risk, but we first take a step back and
consider optimization problems in greater generality.

What is an optimization problem?

A general mathematical optimization problem is a problem of the form

minimizef )

. (13.1)
subjectto x=Q

where f: Rd objective function 5,4 Q
- Risareal-valued unconstrained optimization prebtem , set defining the constraints.
If Q =Rd, then the problemisan Q . Among all x
one with smallest f-value. Typically, the constraint set € 0, we seek
equations and inequalities, will consist of such x
t <1 f ) 0....fmx) 0,g(x)=0 ,...,g0x) = 0. &Rd that satisfy certain
A vector x * satisfying the constraints is called )a(m optimum, a solution, or a minimizer of the

; b
problem (13.1), if f(x *) <f()forallother thatsatisfytheconstraints.Notethatreplacingf i f,
we could equivalently state the problem as a maximization problem.

Optimality conditions
In what follows we will study the unconstrained problem

minimize f(x), (13.2)
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wherey

Optimality conditions aim to identify properties that potential minimizers need to satisfy in relation
to f(x). We will review the well known local optimality conditions for differentiable functions from
calculus. We first identify different types of minimizers.

Definition 13.1. A point x *
ERdisa

» global minimizer of (13.2) if for all x
€ Rd, f(x*) < f(x);
-ea local minimizer, if there is an open neighbourhood U of x * such that f(x %)
» a strict local minimizer, if there is an open neighbourhood U of x * such that f(x * )«ft{})ftarall
ST
« an isolated minimizer if there is an open neighbourhood U of x * such that x *x is the only local
minimizer in U.

Without any further assumptiops on, finding a minimizer is a hopeless task: we simply can not
examine the function at all points in Rd. The situation becomes more tractable if we assume some
smoothness conditions. Recall that kC) dénotes the set of functions that are k times continuously
differentiable on some set U. The following first-order necessary condition for optimality is well known.

We write f x
V1(x) for the gradient of at, i.e., the vector SPRE
gf  ((faxly5 50

f
Theorem 13.2.Let x * be a local minimizerof ~ and assume that f <C 1 (U)for a neighbourhood of U
§ -Thex*f(x%=0

There are simple examples that show that this is not a sufficient condition: maxima and saddle points
will also have a vanishing gradient. If we have access to second-order information, in form of the second
derivative, or Hessian, of f, then we can say(more. Recall that the Hessian of f at x,

V 2f(x), isthed x d
symmetric matrix given by the second deriva é
vf (

OXIOXJ 1 4

In the one-variable case we have learned that if * is a local minimizer qtf c2([a, b]), then fi(x*) = 0

and f'"(x %) Fx
> 0. Moreover, the conditions ’( *) =0 and f”(x *) > 0 guarantee that we have a local
minimizer. These conditions generalise to higher dimension, but first we need to know what f(x) > 0
when we have more than one variable.
Recall also that a matrix A is positive semidefinite, written A
0, if for every x € Rd, x>Ax > 0,
and positive definite, written A

0, if x>Ax > 0. The property. th H atrk ive
&%ﬂ@ﬁ&%ﬁ%ﬁ%&@mﬁb@éﬁdmhzatlon of the property that %I% s} %a %iéégﬁé]hn%ga%?v%ﬂ%ﬁ
RAwer domBisiars Yok it Resitive Renpitid BB eoh@aeIvaliie Tgeh ff‘z acct% élngty 2f (x %) is positive

definite, then x * is a strict local minimizer.

Unfortunately, the above criteria are not able to identify global minimizers, as differentiability is a
local property. For convex functions, however, local optimality implies global optimality.



Examples

We present two examples of optimization problems that can be interpretred as machine learning
problems, but have mainly been studied outside of the context of machine learning. The examples below
come with associated Python code and it is not expected that you understand them in detail; they are
merely intended to illustrate some of the problems that optimization deals with, and how they can be
solved.

Example 13.4. Suppose we want to understand the relationship of a quantity y (for example, sales data)

to a series of predictors x1, . . ., xp (for example, advertising budget in different media). We can often
assume the relationship to be approximately linear, with distribution

Y=B0 + B1X1+ . .+ BpXpt &,
with noise € that satisfiesEl ¢ = 0. As function class we take

H { = h:k)PO+ *BIX1 BX, ...+ppB=(B,.p)ERp+10..,8}.(13.3)

The goal is to determine the Model pramete@pfromdata.
To determine these, we can collegt P sample realizations (from observations or experiments),

{(yi, xil, ..., xip),sli <n}

and minimize the empirical risk with respect to the (normalized)  loss function:

RUIMZRYI-(=1 o g1 i, ppie)2.

2
Collecting the data in matrices and ygctors, 0
KL 0 oopo
01x=0...1 . .. x1p..
y S Popoio=0..00,.8p
000y10=...0,ynX" ..ot X0P

we can write the empirical risk concisely as

R™ 1(h)=
()%ﬂ|yxﬁ2.

Minimizing over h P+1 and the best is then the vector that

€ H means minimizing overvec%rsqs
solves the unconstrained optimization problem

T | 3
minimize; || X - Y| 2.

This is an example of an optimization problem with variableg3 no constraints (all B are valid candidates
andtheconstraintsetis Rp@13,andaquadraticobjectivefunction

1 1
i) = —IXB-y k5 28)>(xp-y )
2n 1 B>X>XB
~ 2n - 2y>XB

(13.4)
+Y>Y,



where X> is the matrix transpose. Quadratic functions of the form (13.4) are convex, so this is a convex
optimization problem. If the columns of X are linearly independent (which, by the way, requires there to be
more data than the number of parameters p), this simple optimization problem has a unique closed form
solution,

B * =(X>X)-1X>y. (13.5)

In practice one would not compute 3 * by evaluating (13.5). There are more efficient methods available,
such as gradient descent, the conjugate gradient method, and several variations of these. It is important to
note that even in this simple example, solving the optimization problem can be problematic if the number
of samples is large.

To illustrate the least squares setting using a concrete example, assume that we have data relating
the basal metabolic rate (energy expenditure per time unit) in mammals to their mass.1 The model we

use is Y = B0 + B1X, with Y the basal metabolic rate and X the mass. Using data for 573 mammals from

the PanTHERIA database2, we can assemble the vector y and the matrix X .
€ Rnx(p+1) in order to

computethe=(30, >1) .Here,p=1andn=573.WeillustratehowtosolvethisprobleminPython.

As usual, we first have t0|mport some relevant libraries: numpyfornumerlcal computatlon pandas for
loading and-trans CO .
In [1]: # Import some important Python

modules import numpy as np

import pandas as pd

from cvxpy import *
import matplotlib.pyplot as plt

We next have to load the data. The data is saved in a table with 573 rows and 2 columns, where the
first column list the mass and the second the basal metabolic rate.

In [2]: # Load data into numpy array
bmr = pd.read_csv('../../data/bmr.csv’,header=None).as_matrix() #
We can find out the dimension of the data
bmr.shape

out [2]: (573, 2)

To see the first three and the last three rows of the dataset, we can use the "print" command.

1This example is from the episode “Size Matters” of the BBC series Wonders of Life.
http://esapubs.org/archive/ecol/E090/184/#data
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In [3]: print (omr[0:3,:])

[[13.108 10.604 |
[9.3918  8.2158]
[10.366 9.3285]]

To visualise the whole dataset, we can make a scatterplot by interpreting each row as a coordinate on
the plane, and marking it with a dot.

In [4]: # Display scatterplot of data (plot all the rows as points) bmrl
= plt.plot(bmr[:,0],bmr[:,1],'0")
plt.xlabel("Mass")
plt.ylabel("Basal metabolic rate")
plt.show(
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The plot above suggests that the relation of the basal metabolic rate to the mass is linear, i.e., of the
form

Y = Bo+ B:LX,

where X is the mass and Y the BMR. We can find® and 1bysolvinganoptimizationproblemas
described above. We first have to assemble the matrix X and the vectory.

In [5]: bmr.shape[0]
1
np.concatenate((np.ones((n,1)),bmr[;,0:p]),axis=1) y =

n =
p =
X =
bmrl:,-1]




In [6]:

# Create a (p+1) vector of variables
Beta = Variable(p+1)

# Create sum-of-squares objective function
objective = Minimize(sum_entries(square(X*Beta - y)))
# Create problem and solve it

prob = Problem(objective)
prob.solve()

print("status: ", prob.status)

print("optimal value: ", prob.value)
print("optimal variables: ", Beta[0].value, Beta[l].value)

status: optimal
optimal value: 152.736200529558
optimal variables: 1.3620698558275837 0.7016170245505547

Now that we solved the problem and have the values B0 = 1.362and 31 = 0.702we can plot the
line and see how it fits the data.

In [6]:

plt.plot(bmr[:,0],bmr[:1],'0’)

xx = np.linspace(0,14,100)

bmr = plt.plot(xx, Beta[0].value+Beta[l].value*xx, color="red’\
linewidth=2)
plt.show()

2 4 S) 8 10

solved directly using the least squares solver in numpy.

12 14

Even though for illustration purposes we used the CVXPY package, this particular problem can be



In [7]: import numpy.linalgas la
beta = la.Istsq(X,y)
print(beta[0])

[1.36206997 0.70161692]

Example 13.5. (Image inpainting) Even problems in image processing that do not appear to be machine

learning problems can be cast as such. An image can be viewed as an m ) .
x n matrix U, with each entry

uij corresponding to a light intensity (for greyscale images), or a colour vector, represented by a triple of

red, green and blue intensities (usually with values between 0 and 255 each). For simplicity the following
discussion assumes a greyscale image. For computational purposes, the matrix of an image is often

viewed
as an mn-dimensional vector u, with the columns of the matrix stacked on top of each other.

In the image inpainting problem, one aims to learn the true value of missing or corrupted entries of an
image. There are different approaches to this problem. A conceptually simple approach is to replace the
image with the closest image among a set of images satisfying typical properties. But what are typical
properties of a typical image? Some properties that come to mind are:

« Images tend to have large homogeneous areas in which the colour doesn’t change much;
« Images have approximately low rank, when interpreted as matrices.

Total variation image analysis takes advantage of the first property. The total variation or TV-norm

is the sum of the norm of the hogzogtal arzd veiu tclif IUIUIILUb
|U”TV nv= I _ uij)2 +(UIJ+1_UIJ)

where we set entries with out-of-bounds indices to 0. The TV-norm naturally increases with increased
variation or sharp edges in an image; Consider for example the two follﬁwmg matrices (imagine that they

regresent a3
pixel block taken from an m%ge . i g2
0173 0 g 1
7320 U2 0
2927 01100
, i =200
The left matrix has TV-norm |U1||TV . ,whiletherightonehasTV-norm||U2|| TV=14.721

(verify this!) Intuitively, we would expecté%mfaltural image with artifacts added to it to have a higher TV
norm.

Now let U be an image with entries uij, and let Q

Clm]x[n]={(i,j)|1<ism,1<j<n}
be the set of indices where the original image and the corrupted image coincide (all the other entries are
missing). One could attempt to find the image with the smallest TV-norm that coincides with the known

pixels uij for i, j)

€ Q. This is an optimization problem of the form

minimize

[|[X||TV subjectto xij=uijfor(i,j) €Q.

The TV-norm is an example of a convex function and the constraints are linear conditions which define a

convex set. This is again an example of a convex optimization problem and can be solved efficiently by
a range of algorithms. For the time being we will not go into the algorithms but solve it using CVXPY.



The example below is based on an example from the CVXPY Tutorial3, and it is recommended to look at
this tutorial for other interesting examples!

Warning: the example below uses some more advanced Python programming, it is not necessary to
understand.

In our first piece of code below, we load the image and a version of the image with text written on i,
and display the images. The Python Image Library (PIL) is used for this purpose.

In [9]: from PIL import Image

# Load the images and convert to numpy arrays for processing.
U = np.array(lmage.open("../images/oculus.png"))
Ucorr = np.array(Image.open("../images/oculus-corr.png"))

# Display the images
fig, ax = plt.subplots(1, 2,figsize=(10, 5))

ax[0].imshow(U);
ax[0].set_title("Original Image")
ax[0].axis('off’)

ax[1].imshow(Ucorr);
ax[1].set_title("Corrupted Image")
ax[1].axis('off’);

Original Image Corrupted Image

After having the images at our disposal, we determine which entries of the corrupted image are known.

We store these in a mask M, with entries mijk = 1 if the colour k of the (i, j)-th pixel is known, and 0
otherwise.

In [10]: # Each image is now an m x n x 3 array, with each pixel
# represented by three numbers between 0 and 255,

# corresponding to red, green and blue

rows, cols, colours = U.shape

# Create a mask: this is a matrix with a 1 if the corresponding #
pixel is known, and zero else

M = np.zeros((rows, cols, colours))

for i in range(rows):

for j in range(cols):

for k in range(colours):

if U[i, j, k] == Ucorr[i, j, k]:

MIi, j, k] =1

http://www.cvxpy.org/en/latest/tutorial/index.htm]
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We are now ready to solve the optimization problem using CVXPY. As the problem is rather big

(more than a million variables), it is important to choose a good solver that will solve the problem to

sufficient accuracy in an acceptable amount of time. For the example at hand, we choose the SCS solver,
which can be specified when calling the solve function.

In [11]: # Determine the variables and constraints
variables =[]
constraints = []
for k in range(colours):
X = Variable(rows, cols)
# Add variables
variables.append(X)

# Add constraints by multiplying the relevant variable matrix
# elementwise with the mask
constraints.append(mul_elemwise(M[;, :, K], X) ==
\ (M[;, 1, kK], Ucorr[;, ¢, K]))

# Create a problem instance with
objective = Minimize(tv(variables[O],variables[1],variables[2]))

# Create a problem instance and solve it using the SCS solver
prob = Problem(objective, constraints)
prob.solve(verbose=True, solver=SCS)

Out [11]: 8263910.812250629

Now that we solved the optimization problem, we have a solution stored in ’variables’. We have to
transform this back into an image and display the result.

In [12]:
# Load variable values into a single array.

Urec = np.zeros((rows, cols, colours), dtype=np.uint8)
for iin range(colours):

Urecl;, :, i] = variables]i].value

fig, ax = plt.subplots(l1, 2,figsize=(10, 5))

# Display the inpainted image.
ax[0].imshow(Urec);
ax[0].set_title("Inpainted Image")
ax[0].axis('off’)

ax[1].imshow(np.abs(Ucorr[:,:,0:3] - Urec));
ax[1].set_title("Difference Image")
ax[1].axis('off’);

Inpainted Image Difference Image




Another typical structure of images is that the singular values of the image, considered as matrix,

decay quickly. The singular value decomposition (SVD) of a matrix A _ )
€ Rmxn is the matrix product

A=UZVT,
where U . . . .
€ Rmxmand V € Rnxn are orthogonal matrices, and £ € Rmxn is a diagonal matrix

with entries 01, ..., omin

{m,n} on the diagonal. Instead of minimizing the TV-norm of an image X,
one may instead try to minimize the Schatten 1-norm, defined as the sum of the singular values,

|[U]|S1 =01+ - - - + omin{m,n}. The problem is then

minimize

[|X]|S1 subjectto xij=uijfor(i,j) €Q.

This is an instance of a type of convex optimization problem known as semidefinite programming.

Alternatively, one may also use the 1-norm of the image applied to a discrete cosine transform (DCT) or a
discrete wavelet transform (DWT). As this examples (and many more to come) shows: there is no unique
choice of loss function, and hence of the objective function, for a particular problem. These choices
depend on model assumptions and require some knowledge of the problem one is trying[to solve.
ANe con de h e %l‘ l. arig ..'ntingpro odure to set a n FLee parro

Notes
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Convexity

Convexity is a central theme in optimization. The reason is that convex optimization problems have many
favourable properties, such as lower computational complexity and the property that local minima are
also global minima. Despite being a seemingly special property, convex optimization problems arise
surprisingly often.

Convex functions

Definition AsetC < pyisconvexifforallx,y € Cand M €10, Litheline Ax+(1 _ Ay et

%4(':]1' A CONVeXis 4 convex set that is closed and bounded.
ody

LetS f:s 5 convék  isconvexandforall x,y &S
Befini@e01] <Rd Afunction Riscalled
fOAX +(1 = N) yIAF(x) + (1 - M (y).

%ﬁe%unction f is called strictly convex if

A ’ ’
- - f(Ax +(1 Ay) < Af)+ (1 Mty ).

A function fis called concave, if
—f is convex.

Figure 14.1 illustrates what a convex function of one variable looks like. The graph of the function
lies below any line connecting two points on it. A function f has a domain dom(f), which is where
the function is defined. For example, if f(x) = log(x), then dom(f) = R+, the positive integers. The

definition of a convex function thus states that the domain of f is a convex set S. We can also restrict a
function on a smaller domain, even though the function could be defined more generally. For example,
E(é) Bdﬁg%%{:ggx%)mﬁcﬁipn if restricted to the domain R
A convex optimization problem is an optimization problem in which the set of constraints Q and
the function f are convex. While most general optimization problems are practically intractable, convex
optimization problems can be solved efficiently, and still cover a surprisingly large range of applications!
Convex function have pleasant properties, while at the same time covering many of the functions that

Fgdiepralicaions Perhaps thempastdmpa fant BeRaHyisiAidesahimmimarse §labal giBainimizer.

Proof. | et x % be a local minimizer and assume that it is not a global minimizer. Then there exists a vector

Y EP(§Iuch‘[ha’[ J.@fﬁcéiécéﬁ%éx,foraﬁy)\and [0, 8 x =Ay+(1 )
f(x) <Ay )+ = AfF (X < Af(x*)+(AN)f( X =f(x*).

f 77 *

- A)Xx* we have



(y, f(y))

(%, f(x))

Figure 14.1: A convex set and a convex function

This holds for all x on the line segment connecting y and x * . Since every open neighbourhood U of x *
contains a bit of this line segment, this means that every open neighbourhood U of x * contains an x g x *

such that f(x) _ o ) _ o
< f(x %), in contradiction to the assumption that x * is a local minimizer. It follows that

X * has to be a global minimizer.

Remark 14.4. Note that in the above theorem we made no assumptions about the differentiability of

the function f! In fact, while a convex function is always continuous, it need not be differentiable. The
function f(x) =

x| is a typical example: it is convex, but not differentiable at x = 0.

Example 14.5. Affine functions f(x) =

{x,a) +band the exponential function ex are examples of
convex functions.

Example 14.6. In optimization we will often work with functions of matrices, where an m

x N matrix is
considered as a vectorin Rmxn = Rmn. If the matrix is symmetric, that is, if A> = A, then we only

care about the upper diagonal entries, and we consider the space Sn of symmetric matrices as a vector

space of dimension d = n(n + 1)/2 (the rofrerdiies oﬂrér)a(ek@bove the main diagonal). Important
Iwﬁo&gmy&metric matrices that are convex éibﬁhéjoﬂé(ratér norm

or the function log det(X), defined on the set of positive serHﬂdeﬁnite symmetric matrices Sf'.
There are useful ways of characterising convexity using differentiability.

Theorem14.7.  1.Let f <CX(Rf .Then f isconvexifandonlyifforall x,y RS,

f
YR w07 [y - ).

2.Llet § &2(Rd). Then fis convexif and only if V 2f(x) is positive semidefinite for al
V%( X) is positive definite for all x, then f is strictly convex.

[ X- If

Example 14.8. Consider a quadratic function of the form
f(X)= 21x>Ax + b>x4 ¢

where A =Rnxnis symmetric. Writing out the product, we get



)O00a11 --- al..l00.n..n
XTAX (=x1--

- XN
anDI]I]x:L..EI.[Ixn
)I]al---l]l]ah 3 %%n+---...n1x1+---
(: X1:---Xn
00+annxn
>Ny N=ijig=xpe}
Si+21<i<j=n
. . aij = aji o
Because A is symmetric, we have , apd the above product simplifies to
XTAh=a x2iii=22f aij xi Xj .
BLiaxi

This is a quadratic function, because it involves products of ¥ie . The gradient and the Hessian of
f (x) are found by computing the partial derivatives of :

>n=aijxj+ij=1
of L
3 VF(x) = Ax +, T al.
X f

In summary, we have
b v (x)= A.
Using the previous theorem, we see that s convex if and only if A is positive semidefinite. A
typical example for such a function is

_ o _ f(x)= ||Ax—b|F:(AX b){ Ax b)= XT AT Ax 2bT Ax bTb.

ATA  Thematrix isalwayssymmetricandpositivesemidefinite(why?)sothatthefunctionfis
convex.
Aconvenientwaypﬁsz@is&afunction isthroughcontourplots.Alevelsetofthe

function f is a set of the form

{ x |f (

x)=cC
b
where c is the level. Each such level set is a curve in R , and a contour plot is a plot of a collection of such

curves for various c. If one colours the areas between adjacent curves, one gets a plot as in the following
figure. A convex function is has the property that there is only one sink in the contour plot.

Notes
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Lagrangian Duality

In this lecture we study optimality conditions for convex problems of the form

y minimizé &
subjectto  (fx 0 @
hx =0,
()=
where %= RN =, >1...,fm, 1) h=( h,...,h >p,andtheinequalitiesarecomponentwise.We
assume that f and the fi are convex, and theh j are lingar. It is also customary to write the conditions
h(x) = 0 as fdeithh >j(x )=ax _b,>§beingthej-throwofA.Thefeasiblesetof(1)is
the set

= X |fix)c PAX =D

It is easy to see that
Fis convex if the fi are convex. If the objective f and the fi are also linear, then (1)
is called a linear programming problem, and
F is a polyhedron. Such problems have been studied

extensively and can be solvT_d with efficient algorithms such as the simplex method.
A first-order optimality condition

We first generalize the standard first-order optimality conditions for differentiable functions to the setting
of constrained convex optimization.

Theorem 15.1. Letf — C1(R") be a convex, differentiable function, and consider a convex
problem of the form 1) Then xoptimization * is an optimal point of the optimization problem

minimizef(x) subjectto x

e F
ifandonlyifforall y € F |
(VLY - XY 20, (15.1)
wher g is the feasible set of the problem.
e Suppose x *is such that (1) holds. Then, since f is a convex function, forall y < pwe have,
Proof. fly) s FOXF)T Xt ¥y e XY 5 X7,

81



which shows that x * is a minimizgt in . To show the opposite direction, assume that but * is a minimizer

that (15.1) does not hold. This means that there exists asuchthat < F X A¥* _
<Vf( E Z()\):(]_A) c > <0.
Since both x * and y are in [0, 1] is also
df Fandisconvex,anypgint x * +Aywith
. GEA) co= (REXFD Y YRENIEEY
BifiMQanevan isneg@tive,thefunc!i&‘n isdecreasingath_ * = 0, and therefore, for
smallA>0,f(z(\))<fz x * ,incontr&d@a)qmc(tl)neassumptior(lﬂwg&)* isaminimizer. O

Examplel5.2.Intheabsenceofconstraints, Rn,allﬁ:dmestatementsaysthat

vYeR": (x*)y_X*0.,

. (V f
Givenyy such that X %Vf(& *)y * O,then¥eplaC|)r(1g gy2 wealsohavetheconverseinequality,

and therefore the optimality condition is equivalent to saying that f(V& ) = 0. We therefore recover the
well-known first order optimality condition.

Geometrically, the first order optimality condition means that the set

(X1 CVAH0* v XS )
defines a supporting hyperplane to thersget

e _v Y

Figure 15.1: Optimality condition

Lagrangian duality
Recall the method of Lagrange multipliers. Given two functions  f (x,  and h(x, y), if the problem
minimizef(x,y) subjectto h(x, y )=0
has a solution (x %, y % ), then there exists a parameter , theLagrange multiplier , such that
of (X%, ys A (15.2)

Vh(x*,y*).
In other words, if we define the Lagrangian as

L(x, y, A) = f(x,y) = Ah(x, y),
then (15.2) says that 7 | g%,y %, A) = 0 for some AThe intuition is as follows. The set

M =
{(x,y) € R2 [ h(x, y) = 0}



is a curve in R2, and the gradient V h(x, y) is perpendicular to M at every point (x, y) € M. For someone

living inside M, a vector that is perpendicular to M is not visible, it is zero. Therefore the gradient
V1(x,y) is zero as viewed from within M if it is perpendicular to M, or equivalently, a multiple of
Vh(x,y).

Alternatively, we can view the graph of f(x, y) in three dimensions. A maximum or minimum of
f(x, y) along the curve defined by h(x, y) = 0 will be a point at which the direction of steepest ascent
V1(x,y) is perpendicular to the curve h(x, y) = 0.
Example tion 2withtheconstraint 22

V15.3.Considerthefuncf(x,y)=xyh(x,y)=x+y-3(acircleofradius3).TheLagrangianisthefunction
L(x,y, A= X2y_ Ax2+ y2 _ 3).
Computing the partial derivatives gives the three equations

g—L =2xy 2Ax=0

)S_L =x 2hy=0
O_L =x+y $=0.
y -_—
From the second equation we get \ = %and the first and third equations become
x3
A 2X — =
Xy v 0
Xzt y 3=0.

VSolvingthissystem,wegetsixcriticalpoint, (%, - 1),

minimizers, we just evaluate the function f on gach of these.

+ 3).Tofindoutwhichoneoftheseisthe

We now turn to convex problems of the more general form form

minimizef (x)

sub{ect to 0 (15.3)

Denote by  the domain of all the functions f, fi, h, i.e.,

D =dom(f)ndorfd | . . . gdemif) ndomi(ty . . . dpm(Hp

Assume that py is not empty and let g be the optimal value of (15.3).
The Lagrangifithe system is defined as

LG A, Qo= f(x)+ A>T (X)+ u>h(x) = f(x ) + Smadfi (x)+ 3p5di hix).

The vectors Aand p are called the dual variables or Lagrange multipliers of the system. The domain of
LD x ISRmxRp.



Definition 15.4. The Lagrange dual of the problem (15.3) is the function

g(A, p mfé_(x A, ).

Efim?nlbacgﬁﬁag@ﬂom below, then the value is —co.
The Lagrangian

Lis linear in the Ai and yj variables. The infimum of a family of linear functions is
concave, so that the Lagrange dual is a concave function. Therefore the negative
-g(A, p) is a convex
hewtoa.15.5. Forany p cRPand A 5 Owe have

g\, p)g P*.

Proof. Let x *be a feasible point for (15.3), that is,

fxi(x) o ohj(x*)=0,1_ 4 n, ] < p.

Thenfor A » Oandany H,sinceeachhj (X*) =0 andgy o,

<

L (X*, AE F(xH + Zm%ﬂfl *z jhj(x? < f(x%.

In particular,

L<x g(A,u) =inf (x, A, p)< (X%, A B £ (x ™.
Since this holds for all feasible * ,jt holds in particular for the * thakminimizes (15.3), for which
f(xx)=px*. -

A point (A, p) with A

>0and (A, p) € dom(g) is called a feasible point of the dual problem. The
Lagrange dual problem of the optimization problem (15.3) is the problem

maximizeg(A,p) subjecttoA
>0. (15.4)
If g * is the optimal value of (15.4), then g %

< p*. Inthe special case of linear programming we actually
have g * = p *.We will see that under certain conditions, we have q * =p * for more general problems, but

Niotawt always the case.
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KKT Conditions

For convex problems of the form

minimizef()x

subjectto (fix 0 @)
<

Ax =,
=b
we introduced the Lagrangian | (x, A, p)and defined the Lagrange dual as
g\, p) = méDL(x, A, ).

We saw that g(A, ) is a lower bound on the optimal value of (1). Note that here we wrote the conditions

hj(x) = 0 as system of linear equations Ax = b, since for the problem to be convex, we require that the

hj be linear functions. We will derive conditions under which the lower bound provided by the Lagrange
dual matches the upper bound, and derive a system of equations and inequalities that certify optimality,
the

Karush-Kuhn-Tucker (KKT) conditions. These conditions can be seen as generalizations of the first-order

optimality conditions to the setting when equality and inequality constraints are present.
Constraint qualification

Consider a linear programming problem of the form
minimize (¢, x)
subjectto  Ayx=p
> x0.

The inequality constraints are _ y j < 0 while the equality constraints are 3% - bi.The Lagrangian has
the form

L(x, A, § = &nYmcxA(a>ixi+ujjxi=1j=1_ )

(c A+A>p)>x b>p.

The infimum over x of this functionis — oo _ 0. The Lagrange dual is therefore
{unlesscA+A>p=p>bcA+A>p=
- if — 0
ghp) = o  else.
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From Lemma 15.5 we conclude that
ma>{_b>|J|C 7\+A>|J:0,7\20}S mir{1C>X |Ax =0, %, gy

Notethatifwewrite = i ,thenwegeﬁ’ﬁédualversionofthelinearprogrammingproblem we started out with,
and in this case we know that

= p*.
maxg(,p) = P

2

In the example of linear programming, we have seen that the optimal value of the dual problem is equal to
the optimal value of the primal problem. In general, we have

* = i i =by=P*.
d* S 29Pe W) < Inf 4 (x) [fix) < OAx = by =P

Once certain conditions, called constraint qualifications, hold, we can ensure that  strong duality holds,
which means d * = p *. One particular such constraint qualification is Slater’s Theorem.

Theorem 16.1. (Slater conditions) Assume that the interior of the domain is non-empty, that the
prob{em (1) isconvex,andthatthereexistsapoint sucb@ab

fi(X)<,O-ISiSm’ AX:b’-|<j< p.

Then d*= p*, the primal optimal value coincides with the dual optimal value.

Example 16.2. The problem minimize e-x subjectto X2/y. O, y 5 Oisanexample of a convex
problem that does not satisfy strong duality.

Example 16.3. Consider the problem
minimxzabiectto Ax = b.

The Lagrangianis | (x, u)=X>X* >(pAX , we can find the infimum
o -b).Foranyp
M) =inf
L(X,H)X

by setting the derivative of the Lagrangian to
x to zero:

VxL( X,H)=2x+A>p=0,

which gives the solution
.
= —A>p.
x= -5 M
The dual function is therefore .
S glu) = > A> Ay b>p.

As the negative of a positive semidefinite quadratic function, it is concave. Moreover, we get the lower
bound 1
M A> Al b>p ¢ ipf XX AX = b .

The problem we started out with is convex, and if we assume that there exists a feasible primal point, then
the above inequality is in fact an equality by Slater’s conditions.



Karush-Kuhn-Tucker optimality conditions

Consider now a not necessarily convex problem of the form

minimizef()x
subjectto  (fx O (16.1)
hx =0,
If p* is the optimal solution of (16.1) andA, ) dual variz(;llgle_s, then we have seen that (this holds even in
(the non-convex case)

> px g, p).

From this is follows that for any primal feasible point X

- < - f(x) p* f(xX)g (A, p).
The difference f(x)

- g(A, u) between the primal objective function at a primal feasible point and the
dual objective function at a dual feasible point is called the duality gap at x and (A, p). For any such
g@ints we know that p,a [(Ap,f

%&ﬁﬂe(éép is small we have a good approximation of the primal and dual optimal values. The duality
gap can be used in iterative algorithms to define stopping criteria: if the algorithm generates a sequence
of primal-dual variables (xk, Ak, pk , then we can stop if the duality gap is less than, say, a predefined
tolerance €.
Nowsupposethatwehavepoints , * Qflc’ﬂtﬁht’fhédu%nlitygapiszero.Then
f(x*) Ag(

oo,up0)

N o O)

=infl Xm Fpf(x)+ Ax X *ifi(}+yj(

Si=Tj=IMYpf(x % )+A % X * * X * ii)i()+ujhj(i=1j=1
< Flx*),

wherethelastinequalityfollowsfromthefactthathx %) * * j(=0andAifi(x) < Ofor]< . and

1 em.Kfollowsthattheinequalitiesareinfactequalities.Fromtheidentity

S F(x % )=F(x % )+A % x % ifi()i=]

andA*J Oandfi(x ¥ < Owealso conclude that at such optimal points,
- - A* ifi(x *)=0,1

<igm.

This condition is known as complementary slackness. From the above we also see that x * minimizes the

Lagrangian ) o
L(x, A%, u*), so that the gradient of that function is zero:

v x (% ARF 1RO,

Collecting these conditions (primal and dual feasibility, complementary slackness, vanishing gradient), we
arrive at a set of optimality conditions known as the Karush-Kuhn-Tucker (KKT) conditions.



Theorem 16.4. (KKT conditions) Let x* and (A *, p*) be primal and dual optimal solutions of (16.1)
with zero duality gap. The the following conditions are satisfied:

f(x*)< 0

h(x% _ 0
) =

A%, 0

Nxfi |(X)7EO"| <ji<<m

wxf (X % ) matgufi(x * ) S pair 7% i j =0,
i j

Moreover, if the problem is convex and the Slater Conditions (Theorem 16.1) are satisfied, then any
points satisfying the KKT conditions have zero duality gap.

Notes
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Support Vector Machines 1

In this lecture we return to the task of classification. As seen earlier, examples include spam filters, letter
recognition, or text classification. In this lecture we introduce a popular method for classification, Support
Vector Machines (SVMs), from the point of view of convex optimization.

Linear Support Vector Machines

PLihs SRRlRRECRTEAPSIRIEAGRI QKRR c Ran
is linearly separable: this means that there exists an affine hyperplane h(x) = w>x + b such that
h(xi) >0 ifyi=1and h(xj) <0 ifyj= . o .
-1. We call the points for which yi = 1 positive, and the
ones for whichyj =
-1 negative. The problem of finding such a hyperplane can be posed as a linear
programming feasibility problem as follows: we look for a vector of weights w and a bias term b (together

a(p+1)-dimensi0nal\)(,e/c;pfrlLs%;:hlthatfor yi=1 W>Xj + a4 foryj = _1.

Notethatwecanreplacethe and+1 -1 with any other positve or negative quantity by rescaling the w

and b, so this is just convention. We can also describe the two inequalities concisely as

y>iwWXi+b) _ 150, 17.1)

A hyperplane separating the two point sets will in general not be unique. As we want to use the linear
classifier on new, yet unknown data, we want to find a separating hyperplane with best possible margin.
Let &+and &
- denote the distance of a separating hyperplane to the closest positive and closest negative
point, respectively. The quantity & = &+ + &
- is then called the margin of the classifier, and we want to
find a hyperplane with largest possible margin.

We next show that the margin for a separating hyperplane that satisfies (17.1) is & = 2/ .
||w]|2. Given

a hyperplane H described in (17.1) and a point x such that we have the equality w>x + b = 1 (the point
is as close as possible to the hyperplane, also called a support vector), the distance of that point to the
hyperplane can be computed by first taking the difference of x with a point p on H (an anchor), and then

EQ|:I)n \BHHQ%&%H%@%@?%} |Fv]:/ﬁ normal to H.
As anchor point p we can just choose a multiple cw that is on the plane, i.e., that satisfies
(w, cw) +b =

89
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Figure 17.2: Computing the distance to the hyperplane

0. This implies that ¢c= b/w| | Zand consequently P = _(b/”W||fW . The distance is then

5¢B, 0 = oxawy, b "

W W,
T E T L R O
b-b~

Similarly, we get& 1! \H’” U W, M nLl W'M
y,weg - /|| .Themarginofthisparticularseparatinghyperplaneisthus6=2/||w||.
If we want to find a hyperplaffe with largest margin, we thus have to solve the quadratic optimization

problem

migimize]w | 2
supjegttory >i i+b) W x < iR.

Note that b is also an unknown variable in this problem! The factor1/2 in the objective function is
just to make the gradient look nicer. The Lagrangian of this problem is



L(W’b’h)f - w|| 2 —2m%ﬂy>iWXi_ Aiyib+ Ai

1 m
~ —W>W_ A>XW _ bA>y, Si=4i,
2
where we denote byxX thematrixwiththey >ixi asrows.Wecanthenwritetheconditionsonthe

gradient with respect tow and b of the Lagrangian as

VuwwbA) w 3= 0
O_L(W 7\: y>)\ =0. (17.2)
ob '

IfyT 7‘62 0, then the conditions (17.2) caRno% be satisfied and the problem is unbounded from below.
IfyT A =0, then the first condition in (17.2) is necessary and sufficient for a minimizer. Replacing w by X>A
and A>y by 0 in the Lagran

{gianfunctionthengivestheexpressionfortheLagrangedualg(A),~1A>XX>YA+mAyT2i=1iifA=0g(\)=
—oo else.

Finally, maximizing this function and changing the sign, so that the maximum becomes a minimum,
we can formulate the Lagrange dual optimization problem as

A>XX>A minimiz%é
-A>esubjecttoA>0, (17.3)
where e is the vector of all ones.

Notes
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Support Vector Machines I1I

The linear separation problem was introduced as the problem of finding a hyperplane
H =[x ER‘?' W x+b:Qf

that would separate data points xi with label yi from Tala points xj with label yj = 1 For

convenience, we collect our data in matrices and vectors, where X
€ Rnxdisthematrixwithrowsy>ixi
and y the vectors of labels yi.
Assuming that the data is linearly separable, the problem of finding a separating hyperplane of
maximal margin can be formulated as

1h‘ni'nimize W||2 subjectto e_ by -XTx < O, P)

where e is the vector of all ones. The Lagrange dual optimization problem is
minimiz]f?\>XX>7\ _ A>e subjectto A 5 0. (D)

Note that there is one dual variable Ai per data point i. We can find the optimal value by solving the dual
problem (D), but that does not give us automatically the weights w and the bias b. We can find the

weights by w = X>A. As for b, this is best determined from the KKT conditions of the problem. These
can be written by combining the constraints of the primal problem with the conditions on the gradient of

the Lagrangian, the condition A
> 0, and complementary slackness as

Xw+ yb g O

Ai(1—y si(wgb))=0fort 4

v
T

A=0
To get b, we can choose one of the equations in which i, and then find b by setting b = yi(1

yw>ixi).WiththeKKTconditionswrittendown,wecangoaboutsolvingtheproblemoffindinga
maximum margin linear classifier using methods such as the barrier method.
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Extensions

So far we looked at the particularly simple case where (a) the data falls into two classes, (b) the points
can actually be well separated, and (c) they can be separated by an affine hyperplane. In reality, these
three assumptions may not hold. We briefly discuss extensions of the basic model to account for the
three situations just mentioned.

Non-exact separation

What happens when the data can not be separated by a hyperplane? In this case the constraints can not
be satisfied: there is no feasible solution to the problem. We can still modify the problem to allow for
misclassification: we want to find a hyperplane that separates the two point sets as good as possible, but
we allow for some mistakes.

One approach is to add an additional set of n slack variables s1, . . ., sn, and modify the constraints to
w>X +b
>1-s,fory=1,w>iiixj+b<-1+sj,foryj=-1,si=0.
T Yhei-

thdatapointcanlandonthewrongsideofthehyperplaneifsi>1,andconsequentlythesumni=1siisanupperboun

donthenumberoferrorspossible.Ifwewanttominimizethenumberofmisclassifiedpoints,wemaywanttomini
g\lmmlze" W H 2Ynusjj=1

mizethisupperbound, soasen5|blech0|cef§v bjectlve b 1+si

function would be to add aSHRIEPIAYF thi su?ﬂ jfhéﬂew probleen thus Becoraes,

> < <

S
for some parameter . The Lagrangian of this problem and the KKT conditions can be derived in a similar
way as in the separable case and are leht as an exercise.

Non-linear separation and kernels

The key to extending SVMs from linear to non-linear separation is the observation that the dual form of

the optimization problem (D) depends only on the dot products >< i ofthedatanoints Infact th
xi,xj ofthedatapoints.Infact,the

(xi, xj 2 ! H
If we map our data into a higher (possibly inﬁr&i}te) Eleigw_e)l]_s'ional space,

(i, ))-th entry of the matrix XX> is precisely

and consider the data points ¢(xi), 1 N <ic ,thenapplyingthesupportvectormachinetothesehigher

dimensional vectors will only depend on the dot products
K(xi, X)) 5 o(xi),dKj)

The function K is called a&ernel function a tynical example, often used in practice, is the Gaussian
radial basis function (RBF),

K(x,y) = e ¥ 7202,

Note that we don’t need to know how the function lgpks like! In the equation for the hyperplane we simply
replace w>x with K(w, x). The only difference now is that the function ceases to be linear in x: we get a
non-linear decision boundary.



Multiple classes

One is often interested in classifying data into more than two classes. There are two simple ways in which
support vector machines can be extended for such problems: one-vs-one and one-vs-rest. In the one-vs-
one case, given k classes, we train one classifier for each pair of classes in the training data, obtaining a

total of k(k » ' o .
-1)/2 classifiers. When it comes to prediction, we apply each of the classifiers

to our test data and choose the class that was chosen the most among all the classifiers. In the one-vs-

rest

approach, each train k binary classifiers: in each one, one class corresponds to a chosen class, and the
second class corresponds to the rest. By associating confidence scores to each classifier, we choose the
one with the highest confidence score.

Example 18.1. An example that uses all three extensions mentioned is handwritten digit recognition. Sup-

pose we have a series of pixels, each representing a number, and associated labels
{0,1,2,3,4,5,6,7,8, 9}

We would like to train a support vector machine to recognize new digits. Given the knowledge we have,
we can implement this task using standard optimization software such as CVXPY. Luckily, there are
packages that have this functionality already implemented, such as the SCIKIT-LEARN package for

Python.
We illustrate its functioning below. The code also illustrates some standard procedures when tackling a
machine learning problem:

 Separatethe data set randomly into training data and test data;

« Create asupport vector classifier with optional parameters;

e Train (using FIT) the classifier with the training data;

« Predict the response using the test data and compare with the true response;

* Report the results.

An important aspect to keep in mind is that when testing the performance using the test data, we should
compare the classification accuracy to a naive baseline: if, for example, 80% of the test data is classified
as +1, then making a prediction of +1 for all the data will give us an accuracy of 80%; in this case, we
would want our classifier to perform considerably better than getting the right answer 80% of the time!

In [15]: import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline
from sklearn import svm, datasets, metrics
from sklearn.model_selection import train_test_split




In [16]: digits = datasets.load_digits()

# Display images and labels
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):
plt.subplot(2, 4, index + 1)
plt.axis('off’)

plt.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest’)
plt.title('Training: %i’ % label)

# Turn images into 1-D arrays
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

# Create classifier
svc = svm.SVC(gamma=0.001)

# Randomly split data into train and test set
X_train, X_test, y_train, y_test = train_test_split(data,
digits.target, test_size = 0.4, random_state=0)
svc.fit(X_train, y_train)

Out [2]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.001,
kernel="rbf’, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

Training: 0 Training: 1 Training: 2 Training: 3

0143

Now apply prediction to test set and report performance.

In [3]: predicted = svc.predict(X_test)
print("Classification report for classifier %s:\n%s\n"
% (svc, metrics.classification_report(y_test, predicted)))




QOut [3]: Classification report for classifier SVC(C=1.0, cache_size=200,
class_weight=None, coef0=0.0,vdecision_function_shape=None,
degree=3, gamma=0.001, kernel="rbf’, max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001, verbose=False):
precision recall fl-score support

01.001.001.00 60

VOO ANWN—

avg/total 0.99 0.99 0.99 719

In [4]: impordkimage

from skimage import data

from skimage.transformimport resize
from skimage import io

impords

Now try this out on some original data!

In [5]: mydigitl = io.imread('images/digit9.png’)

mydigit2 = io.imread('images/digit4.png’)

plt.figure(figsize=(8, 4))

plt.subplot(1,2,1)

plt.imshow(mydigitl, cmap=plt.cm.gray_r, interpolation="nearest’)
plt.axis('off’)

plt.subplot(1,2,2)

plt.imshow(mydigit2, cmap=plt.cm.gray_r, interpolation="nearest’)
plt.axis('off’)

plt.show()

In [6]: smalldigitl = resize(mydigitl, (8,8))

smalldigit2 = resize(mydigit2, (8,8))

mydigits = np.concatenate((np.round(15*(np.ones((8,8))-
smalldigitl][:,:;,0])).reshape((64,1)).T,

np.round(15*(np.ones((8,8))-

smalldigit2[:,:,0])).reshape((64,1)).T),axis=0)

# After some preprocessing, make prediction

guess = svc.predict(mydigits)

print guess

[94]

Notes






19

[terative Algorithms

Most modern optimization methods are iterative: they generate a sequence of points x0, x1, . .. in Rd in
the hope that this sequences will converge to a local or global minimizer x * of a function f(x). A typical

rule for generating such a sequence would be to start with a vector x0, chosen by an educated guess, and
Ehﬁ,“rﬁ%r\}é from step kto k + 1 by

Xk+1 = Xk+ O(kpkl

ina way that ensures that f(xk+1) X <f( k).Thepareol(meter kiscalledthesteplength,whilepkisthe

search direction. The are many ways in which the direction pk and the step length ak can be chosen. If
we take
pk=
-Vi(xk), (19.1)

then we take a step in the direction of steepest descent and the resulting method is (unsurprisingly) called
gradient descent. If there is second-order information available, then we can take steps of the form
p =

-V 2kf(x)-1k V f(xk). (19.2)
The resulting method is called Newton’s Method. If applicable, Newton’s method tends to converge

faster to a solution, but the computation at each step is more expensive.
Gradient descent

In the method of gradient descent, the search direction is chosen as

Pk = - ¥ fxK).

To see why this makes sense, let pbe a direction and consider the Taylor expansion
f(xk+ ap) = f(xk)+a g, vf (xk) + O (a2)

Considering this as a function of o, the rate of change in direcfon  at x « is the derivative of this function
ata=0,
f d(x+kap)
g o la=0c pCFRKD,
also known as the directionalderivativéof at xk in the directior This formula indicates that the
rate of change is negativeand we have a descent directjon &k)
" Ap, Vo,
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The Cauchy-Schwarz inequality gives the bounds

~lpll2 i (< THXK < | p | 222 ¢

We see that the rate of change is the smallest when the first inequality is an equality, which happens if

p= —ayf Kk

forsome a > 0.

For a visual interpretation of what it means to be a descent direction, note that the angle 8 between a
vector p and the gradient X X S
V {()atapoint isgivenby(seePreliminaries,Page9)

<ﬂV”§:|mu2nwu

This is negative if the vector p forms and angle greater thafRiuios (e gradient. Recall that the gradient
points in the direction of steepest ascent, and is orthogonal to the level sets. If you are standing on the
slope of a mountain, walking along the level set lines will not ghange your elevation, the gradient points to
the steepest upward direction, and the negative gradient to the steepest descent.

Figure 19.1: A descent direction

Any multiple a

V f(xk) points in the direction of steepest descent, but we have to choose a sensible
parameter a to ensure that we make sufficient progress, but at the same time don’t overshoot. Ideally, we

would choose the value ak that minimizes f(xk o o
- ak Vf(xk)). While finding such a minimizer is in

general not easy (see Section Lecture 4 for alternatives), for quadratic functions in can be given in closed

form.
Linear least squares

Consider a function of the form :
F= Z)ax-bf.

The Hessian is symmetric and positive semidefinite, with the gradient given by

vf (x)= A> (AX_ p).



The method of gradient descent proceeds as

Xks1 = Xk — @ >KA (AXK p).

To find the best ok, we compute the minimum of the function

o 5 d)= XK ~aA>(Axk-b)). (19.3)
If werk:= A>(b_ayk) ="V o x k j\nd compute the minimum of (19.3) by setting the derivative
set to
zero,

f
c|>'(0() = ga&k +ark) = (VF(xk + ark), re)
= RA>(A(xk + ark)
=3 b), rk» re)
:_A>(AX 2k

- b), rk> +a {A>Ark,
we get the step length

r>
> rk 2

& rk %>Aruev@-

kK k Fr>A>Ar ||Ar 12

Note also that when we have rk and k k, we can compute thKnext r as

ren” A7 (8 Axkig
= A>(B _ A(xk +akrk))
=A>(0 Axk akAr) =r - a>KA Ark.
The %adient descent algorithm for the linear least sqhares problem proceeds by first computing r0 =
A>

- A)EO), and then at each step

_krk
o k > A
X o1 - kArk
T xk + akrk
K +1 _I’
-a>kkAArk.

Does this work? How do we know whef} to stop? It is worth noting that the residual satisfies r = 0 if and
only if x is a stationary point, in our caée, a minimizer. One criteria for stopping could then be to check

whether
|Irk]|2 < € for some given tolerance € > 0. One potential problem with this criterion is that the
function can become flat long before reaching a minimum, so an alternative stopping method would be

to stop when the difference between two successive points,
P P |[xk+1 - xk||2, becomes smaller than some

e>0.

Example 19.1. We plot the trajectory of gradient descent with the data
02= 003 i
A mo O,1 b
001=-10.0
As can be seen from the plot, we always move in the direction orthogonal to a level set, and stop at a
point where we are tangent to a level set.
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Figure 19.2: Trajectory of gradient descent

Step length selection

While fora quadratic function of the form |[Ax-b]|2 it was possible to find a step length ak by minimizing
the function in the direction of steepest descent, in general this may not be possible or even desirable. The

step length is often called the learning rate in machine learning. A good step length

« is not too small (so that the algorithm does not take too long);
« is not too large (we might end up at a point with larger function value);
- is easy to compute.

There are conditions (such as the Armijo-Goldstein or the Wolfe conditions) that ensure a sufficient
decrease at each step. Another common approach is backtracking: in this method one uses a high initial
value of a (for example, a = 1), and then decreases it until the sufficient descent condition is satisfied.
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Convergence

Iterative algorithms for solving a problem of the form
minimizef(x), x ERd (20.1)

generate a sequence of vectors x0, x1, . . . in the hope that this sequence converges to a (local or global)

minimizer x * of (20.1). In this lecture we study what it means for a sequence to converge, and how to
quantify the speed of convergence. We then study the convergence of of gradient descent for quadratic
functions and for convex functions satisfying certain smoothness assumptions.

Convergence of iterative methods

A sequence of vectors
xk

{x dk}k&NOCRconvergestox * withrespecttoanorm||-||ask—co,written

- X, if the sequence of numbers ||xk — x * || converges to zero. Iterative algorithms will typically not
find the exact solution to a problem like (20.1). In fact, computers are not capable of telling very small

numbers (say, 2-53 in double precision arithmetic) from 0, so finding a numerically exact solution is in
general not possible. In addition, in machine learning, high accuracy is not necessary or even desirable
due to the unavoidable statistical error.

Definition 20.1. Assume that a sequence of vectors

{xconvergestox * k}k ENO0.Thenthesequenceis

said to converge
S

(a) linearly (or Q-linear, Q for Quotient), if there exist an r (0, 1) such that for sufficiently large k,
¥t = X[ < r xR
- X

X
limn PR =0,
e k-
X
(c) withorder p, if there exists a constant M > 0, such#hat for sufficiently large k,

(b) superlinearly,if

[Xket = X[f < M Xk - x*||p.
The case p = 2is called quadratic convergence
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These definitions depend on the choice of a norm, but any two norms on Rd are equivalent, convergence
with respect to one norm implies convergence with respect to any other norm. Note that the definitions

above start with the assumption that the sequence o
{xk} converges to ng Therefore, for sufficiently large

k,
|Ixk = x * || < 1 and if {xk} convergﬁ? M/bthgrﬁﬁr of convergence 1,.then
|

|Xk_ X | ps_l\{, [k = X || <M.

This shows that convergence of order p implies convergence of any lower order and also superlinear
convergence.

Example20.2. kConsiderthesequenceofnumbersxiforsome.Clearly,

>k &/ :

)r>1xkx=0ask.Moreover,r - —_ =
Xk+1 Sk (27 2rkr2rk >1€,

which shows that the sequence has rate of convergence r

Convergence of gradient descent for least squares

Throughout this section, IE ﬂefers 2 the -norm. We study the convergence of gradient descent for the
least squares problem

F(x minimize = ||Ax-b]|2, (20.2)

N —

where A

€ Rmxn with m > nis a matgx gf full rank. The function f(x) is convex, since it is a quadratic
functionwithpositivesemi-definiteHessian T .Gradientdescentproducesasequenceofvectorshy
the rule xk+1 x K k

\7vhelr<e4’fh(é1 gtep length ok and the residual rk are given by

ok = Brill re=apb a0) = - ppe.
JJ é rk
At the minimizer x * , the residurl IS= x )=0_ gt % andifthesequencexkconvergests' * the
norms of the residuals converge to .Qlonversely,the residual is related to the difference k X X by
- rk=A>(0 Ay )= A>b _a o (b-Ax*))= A> AXK_ x*). (20.3)
Therefore
k = (A>A)-1 A> A)-1
I o g = (A7 AT < (A7 AT ke
where e |IBAxIl I B
r || |l lIBl[=maxx=0/ istheoperatornormofamatrix withrespecttothe2-norm.

Consequently,ifthesequence k convergestozero,sodoesthesequence

|Ixk = x * ||. A reasonable
criterion to stop the algorithm is therefore when the residual norm
A || k|| is smaller than a predefined
tolerance € > 0.
The following theorem (whose proof WG&Eit) shows that the gradient descent method for linear least

the norm.ATi”e 'stiutement involves the condition number of

M" This %@E%éﬂ)% Q%ﬁmﬁﬁioﬂ%umber, introduced by Alan Turing while in Manchester, is one of the most important ideas in
numerical analysis, as it is indispensable in studying the petfofmAnte, of numerical algorithms.



where At is the pseudoinversef A. If A
definedas At = (A> A)=T A 76 condition

Theorem 20.3. The error in the k + 71 -thiterate is bounded by

€ Rmxn with m > n and linearly independent columns, it is
number is always greater than or equal to one.

<EA ) 4 5
pees =X < g2 s <

In particular, the gradient descent algorithm converges linearly. We can deduce Theorem 20.3 as a
special case of a more general convergence result from convex function satisfying certain smoothness
assumptions.

Notes
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Gradient Descent

In this lecture we will derive a convergence result for gradient descent applied to a convex function

€ C1(Rd). Convergence results in optimization are often stated in terms of the difference f(xk) - f x,
where f* =f(x %) and x * is a minimizer of f. By the convexity of f, we have

f (xk)
-f(x*x )< {(VFf(xk),xk=x%)> <||VFf(xk)| |Ixk=x%*], (21.1)
which allows to relate the convergence of f(xk)
- f* to the convergence of ||xk - x % ||. In order to

rsdiearspefeepvereefenTairaostieedsave sdtliqeaigpepthness and boundedness conditions.

The most common smoothness condition in optimization is Lipschitz continuity, applied to a function or to
its gradient.

Definition 21.1. A function f : Rd Rk is_galled Lipschitz continuous with Lipschitz constant L > 0,
Rl x.y
I =) flyxxy. Il -l

Afunctionf : RY_, Ris called Bsmootf’for some B > O if the gradient is Lipschitz continuous:

Ivet v NE& Ix-y
ferallyy

Lipschitz continuity lies somewhere between continuity and differentiability. If f
€ C1(Rd) is
Lipschitz continuous with Lipschitz constant L, then
| V£(x)|| < L. Similarly, B-smoothness implies
that
|| V 2f(x)|| < B. Recall from Lecture 14 that a function f € C1(Rd) is convex if and only if
f(y) +
(Vi(y),x-y> <f(x) (21.2)
temalng 21.2. Let f =C*(Rf' be p-smooth and convex. Thenfprany x y R€,

€ Rd. The following result shows that B-smoothnessrgs equivalent to a quadratic upper bound
on the difference between tte Kn&tidniyalue aens L'm;aﬁmﬁler bbu}ﬁ(dz(Zl.Z). (21.3)
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Conversely, if a convex function  f< C1R¢ katisfies (21.3), then forall x Ye RY,

1
TR e s &g vy (21.4)
In particular, f is B -smooth.

Proof.  The first inequality follows from the convexity assumption. For the second inequality, represent
f(x) Hs3anintegral:

) - fiy)= THOCuetix -y xy dt.
We can then write

PO - fL ¢ gylex -y = 10t xy x y
g wx ¥y 0.dt

|

< | vEUD vy Xy Y
[B. | 2ty

< gty x y —

- -h2Btll-112,0

where the first inequality follows from applying Cauchy-Schwartz, and the second from the assumption of
B -smoothness.
For the second claim, assume that satisffes the bound (21.3). Forany x, y, z

€ Rd we have
F(x) - f(y)=(f 3 fizh#f(2)
< T X Bz - yi2,
- z)y + (Vf(y), z -y
where we used the convexity f to bp(%d andthe -smoothnesstoboundf (z) - f(y)If
ofwenowsetz=y (1/B(vf(y) ~_t(2) B and simplify the resulting expression, we get
f (x)) 2
fix)-ty) v — Ly s>

Adding this expression to the same ane Witk thefrobeg ok v || V f excdhged, we get

xandy 1 2
Og (vl va(y Xyy —pl Vil v
X
The fact that this implies B-smootm{t)sss offfollows from the Cauchy-Schwartz inequality. O]
We can, and will, use (21.3) and (21.4) as alternative definitions of 3-smoothness.

0
Theorem 216f € C1(Rd) be a function that is B-smooth and convex. Then for any X ER’%G

Hbrates{ 1 senerated by gradient descent with constant step length 1/@ satisfy
k 2B o 2
f(x) - f % TRRRE

wheref * = f(x)and x *is a minimizer of f.



Proof. Observe first that

Pt x P = XK (B-) fp)x k X 12
_ 1
X 1222 SO 00 9y (g2

@14 x x

1 kll2s I8
s || k= *[lg-"V2

-}

where in addition to (21.4) we used the fact that ) =0 In particular, since ”xk _ X *” is
non-increasing, we get from (21.1) that

(x) T fx) IV K[-[|O=*[|.X X (21.5)
Using (21.3) with y = x K ar)dlei(V&)iﬂ)ﬂ\ﬁeget X

1 k+1 X
5 - k s - ||V KX]JF)@

k+1
Set A=f(kkx ) _ f *,sothat -k kithx-JTHex) =A A
(21.5)

k 21

Aot __ o (21.6)
1&?)_()2”3%7 | <-B [x0 - x * ||2 ’

whereweused(21.5)tolower-bourid Wirfthesectitinequality. In particular, we see that

AKk+1
< Ak. We can rearrange the inequality (21.6) to

, A, Tbk )
BT <
2Bx0 x| PAP- o kxjaker  Dua
> 11
+

’

k+1

where for the first implication we divided both sides X k , and for the second implication we used
+

that Ak/Ak+1 . A i 1 k, we get
> 1. Applying the same bound reayrsively to

1 k +1 1 _k
| - Diea = 2B XOX * JLaD oy 4B - |

Taking the inverse, and shifting the index frorrﬁ%to k', we get

— 0 *

< 1

as claimed. O
We can get even better convergence when assumingstrong convexity.

Definition21.4.Afunction 1Rdisgalled () a-strongly convexforsome o > 0 if for every
xd,y R

fly) € v Fly)x —y 3 Slix-yll2<x).

If a=0this is just the derivative characterization of convexity. Note that a function f is a-strongly
convex if and only if the function f(x) a x 2/2"5 gpnvex.



Remark 21.5. The difference

DrOGY) = F0) - F(yL ¢ g¥leX -y

is called the Bregman divergence associated to f Tosaythatafunction f <C1(RY is a-strongly
convex and B-smooth is to say that forany, x y <Rd,

o B
— y X, L.
x-|2<Df(2 YV ix-yp2.2
This means that we can, locally, upper and lower bound the function by quadratic functions. In particular,

Bo.

Theorerk®. 6. € C1(Rd) be a function that is a-strongly convex and B-smooth. Then for any
xO&ER , the iterates of gradient descent with constant step length 2/( ¥PB) satisfy

k+1 (K—l) k X *
”X _XlTS K+1 ”X - ”

wherek = B/a.

Example 21.7. Assume that o« = B (and therefore k = 1) in Theorem 21.6. Then
o
f(x E: = x| 2

The gradient is yf (x)=a x. Starting withx % Rradient descent with step length 2/(a + B) = 1/a

gives 0
= =0=x*
X17=X _x0 ’

so that this converges in a single iteration.

Example 21.8. Let f(x) =1 - m > n,andassumeA has full rank. The

) ~ [|A-||22xbforAERmMxNwith
difference between the function and'its approximation is

1
S(IAx =b 2 =AY - b [lR- (AY_ p)T A(x - ¥) 1= {2AX - V)|~ (1.7)

The largest and smallest singular values of the matrix A are defined as
ol(A) = max ||AX||(;'m (A

) = min Iax]|.
x|l 1Al

L

The term (21.7) is therefore bounded from above and below by the squares of the largest singular value
and by the smallest singular value of : A

T - W2z A=Y 22 oAy 2

A well-known characterization of the condition number of a maftix fs ) = a1(A) /on(A), and from
this we recover the convergence result from Lecture 20.

The proof of Theorem 21.6 relies on the following auxiliary result.

Lemma 21.9. Let f be a-strongly convexand psmooth. Thenforany x,y € R d,

1
(P g (95 -yy aagle - yligsrvin P
-V f(



Prof(zf)Setp §\>/<v f:t>§] 0; _glrtx || 2Since f is a-strongly convex, ¢(x) is convex. Moreover, g 4y =
v ox We therefore ge

P oL (g ) xey) LI oy FOlx Y
RE 1 VAR ZSY

Lemma 21.2 [3
Il -H2 (21.8)
gyl2-2 <o
B %

From Lemma 21.2 it follows that  ®isp -smooth arL zJLsﬁes the inequality

)1 - > > 1 y 9 2
<V>€ﬂ_(v cI&ﬁX-O( q)(&qu)(Y)”-
Replacing ¢ in this expression, we get
(Kpx) vf(y)_ax+0(yx—o( 21y ||V (B vf(y_ax+0(y||
The left-hand side of this inequality gives

(Vg §(Y) - ox+ay,x—y )= (Vg Y) X y) - allx - y[R29)

The right-hand side, on the other hand, gives

1 +
X)_vf(Y)—O((x+ocy||ZB_H&V—Vf[|X) f(y)2+a (21.10)
YIx-yl2-2 < v -f),  yxy2
Collecting the terms in (27.2) and (24.39) invapvirlg ) (x) fOY X Y onthe left, and the terms
involvingxﬂ fy)gand 2onthgri Pt,w%et_x 1%

C vk (xy s?ﬁx>y> b2 Lxy+ TGO - V() 2.

o+
Multiplyinghi(sxexpressionwith givegthégeélrgdmghuahty O

_— =

ProofofTheorem?21.6.Setn .Sih@(%ﬁﬂbmitthist rmwheneverit

appearsinthefollowing(sothatwecarMhikof (W f (wWheWeverwesee f(xk)).

- nVf(xk) — x*]2 = |[(xk - x*x) - nVf(xk)]|2

[

"I

(JEN2-20 CVE(xk), xk=x %) 2] VF(xk)]|2B- a2 xk-
k

k+1 *,2
I =X

where in the inequality we used Lemma 21.9 to bound the term (VH(xK), xk - x* ), and simplified the
’ ’ D

resulting expression. The claim now follows by dividing the numerator and the denominator by a.



Using the bound
2
(KKk_)=12=1+1 (-k-2k+1 ) o eAlk+1)

fx (B/2) xk
and the inequality f(xk) _ <|| - X% ||zfrom the B-smoothness assumption, we get the
convergence bound 8 x 0
k * X * 2 _ 4
P - f —x2 e G

which is a considerable improvement over the 1 convergence bound when only assuming B -smoothness.
In particular, the number of iterations to reach accuracy € is of order O(log(1/€)).

Notes

The convergence of gradient descent under various smoothness assumptions is a classic theme in convex
optimization. The presentation in this chapter is based on [4]. A standard reference for many of the tools
used in the analysis of gradient descent (and a wealth of additional information) [19].
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Extensions of Gradient Descent

We have seen that for a B-smooth convex function f e CH( R, the sequence of iterates {xf k >0

generatedbygradientdescentwithsteplength satisés
F(X1) ~ f(xH = O (1/k),

where x * is a minimizef of . This implies that we need a number of iterations of order O(1/€) to reach
accuracy &. If in addition §he function is a-strongly convex, then we get linear convergence with ratio

(x KB/o . A
-1)/(k+1),where = .Fortheconvergenceofthefunctionvalue,thisimplies
f(xk 1) _f(x *)=ole D)

shows that only O(log(1/¢)) iterations are needed to reach accuracy €. In this lecture we will have a look
at two extensions of gradient descent. The first is an accelerated version, while the second extension
covers common situations in which the function to be minimized is not differentiable.

Acceleration

Accelerated gradient descent, proposed by Y. Nesterov, begins with initial values y0 = x%= x_, eRY
an(t)j the proceeds as follows for k
>0:

k 1
yk=x P _xh

xk+1= y* S Fvk)

The method can be interpreted as carrying over some momentum from previous iterates: instead of only
taking into account the current iterate, the gradient step is based on a combination of the current and the
previous step. This method has favourable convergence properties.

il'heor:em 206, € C1(Rd) be convex and B-smooth. Then accelerated gradient descent with step
ength 1/ converges to a minimizer x * of f with rate

f(xk)_f(x’)ﬁ I%ﬁﬁ.

There are lower bounds that show that this rate is optimal for gradient methods.
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Proximal gradients

The objective functions arising in machine learning often have the form

f(x) = g(x) + h(x),

where both g and h are convex, but only g is differentiable. The term h( x) is typically a regularization
term.

Example 22.2. Consider the function

f(ﬁ)i *AX—b”z'hX”l

ZWhere||x||:dlizllxi|and.Thep@o%leomofminimizingthisfu nctionisoftenreferredtoastheLASSOprobleminstatistics. Thepurpc
These are solutions that have only few entries that are significantly larger than 0.

Definition22.3.Let beaconvexfunction.Thesubdifferentialoffat istheset

X
RARAT

of(x)= (ge = JX)rg (v - x) = f(y) ).
The elements of of(x) are called subgradients.

If fis differentiable at x, then there exists only one subgradient, which coincides with the gradient.

Example 22.4. Consider the function f(x) =
|x|. The differential is then
x>0
ofx) = x =0
00[-1,1]-1x < O

Example 22.5. The subdifferential is additive, in the sence that if ), A and B are matricesand f (x)=
g(AX+h( Bxthen
(XO AT(BT(af )= 99 AX)*  3h Bx).

A special case is the 1-norm. Here, we can write

d=[Mi(x)i=1
[ ||Zl ’

where MMi(x) = xi is the projection on the i-th coordinate. It follows that the subdifferential of the 1-norm
can be described as

0

6
IX|[1 = {z : zi = sign(xi) if xi = 0, zj € [-1,1] if Xj = O}.
Using the subdifferential, we have the following optimality condition.

Theorem 22.6. Let f : RY _, R be a convex function. Then x is a global minimizer of f if and only if

Oxg=0f(



For composite functions f (x) = g(x ) + h(xwith ge ¢ 1R, this means that
S - va(x) ohk).

There are different possible strategies for generalizing gradient descent to make it work with non-
smooth functions. One would be to simply pick a subgradient at each step and follow that direction. Note
that this may not be a descent direction. One common strategy for composite functions is to perform
a gradient descent step based on the smooth function g, and then project onto the subgradient of h.
Projection onto the subgradient is done via the proximal operator

]
proxh(x) = arg min y 5 IIx - v frhiy)
Notethatx * = Prox (x) satisfies x*  ghxx .The proximal gradient method for minimizing
a functlgn of the form f - x &arfs yithavector  Rand then for > 0 proceeds by
computing  (x) = g(x) + h(x)
v é(xk

(xk+1= Proxxk nh
Example 22. 7 Recall he image inpainting problem from Lecture 13. An image can be viewed as an

m
x n matrix U, with each entry uij corresponding to a light intensity (for greyscale images), or a colour

vector, represented by a triple of red, green and blue intensities (usually with values between 0 and 255
each). For simplicity the following discussion assumes a greyscale image. For computational purposes,

the matrix of an image is often viewed as an mn-dimensional vector u, with the columns of the matrix
stacked on top of each other. In the image inpainting problem, one aims to learn the true value of missing
or corrupted entries of an image. There are different approaches to this problem. A conceptually simple
approach is to replace the image with the closest image among a set of images satisfying typical properties.
But what are typical properties of a typical image? Some properties that come to mind are:

« Images tend to have large homogeneous areas in which the colour doesn’t change much;
« Images have approximately low rank, when interpreted as matrices.

Total variation image analysis takes advantage of the first property. The total variation or TV-norm
is the sum of the norm of the horizontal and vertical differences,

U TV2MENV=UiSTiET ) uig)2 + (W) - ig)?,

where we set entries with out-of-bounds indices to 0.

Now let U be an image with entries uij, and let Q

C[m]x[n]={(i,j)|1<ism,1<j<n}
be the set of indices where the original image and the corrupted image coincide (all the other entries are
missing). One could attempt to find the image with the smallest TV-norm that coincides with the known

pixels uij for (i, j)

€ (. This is an optimization problem of the form

minimize

[[X||TV subjectto xij=uijfor(i,)EQ. = )

Alternatively (see Exercise 8.3), ohe tah SuriEA |Pé§LT[a|||9ed Br())\bl>e<m v,

where p renresents the linear map projects X onto the entries indexed by €2 This problem can be solved
using proximal gradient methods.
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Figure 22.1: Soft thresholding

Even though it seems that a proximal gradient method would require solving an optimization problem
within an optimization problem, closed form expressions are known in many cases.

Example 22.8. Consider the function h( A X AS
|x])= ||forsome 0.Then
go AoXx A
proxh)= T MX) = Ox - & LA A]

npo-x*AX K-
This is known as soft thresholding (see Figure 22.1).

If a function h has the form

h 2% 0 i)

then the proximal mapping associated to h hz&ihe form

proxhy) = (proxh ),...,proxp(xd)).

It follows that if h(x) = A

operator
TA to each coordinate of x.
For the proximal gradient method it is possible to obtain similar convergence results as for gradient

descent.

Notes

|[x]|1, then we can apply the proximal operator by applying the soft thresholding

Accelerated gradient descent goes back to Nesterov’s work [20]. A more in depth analysis can be found in
[19] and [4]. An interesting interpretation of accelerated gradient descent in terms of differential
equations is given in [26]. The proximal operator is discussed in detail in Chapter 6 of [1].
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Stochastic Gradient Descent

In this lecture we introduce Stochastic Gradient Descent (SGD), a probabilistic version of gradient
descent that has been around since the 1950s, and that has become popular in the context of data

science and machine learning. To motivate the algorithm, consider a set of functions
H={h:w&Rdw},where
each such function depends on d parameters. Also consider a smooth loss functions L, or a smooth

. . . . X, } C X x Y
?Rﬁ&’f‘,@é‘ Jr?entﬂfe ?ulr?éc’ | cngctlon. Given samples

fifw) = L(hw(xi),y

ékln}

(S
The problem of finding functions that minimize the egpirical risk is

hinimizé sn f4(a).
\\%
E€Rd ni

The fi are often assumed to be convex and smooth. In addition one often considers a regularization term
R(w). In what follows, we abstract from the machine learning context and consider purely the associated

optimization problem. Hence, as usual when dealing only with optimization problems, we switch notation
and denote the variables to be optimized over by x.

Stochastic Gradient Descent

We consider an objective function of the form

f (%): nfi(x).=1 (23.2)

In what follows we assume that the functions fi are convex and differentiable. If n is large, then computing
the gradient can be very expensive. However, and coniai]g? ring the machine learning context, where f(x)

is an estimator of the generalization risk EE[fE(x)] of a |)fy=0 functions f€ parametrized by a random
vector &, we can shift the focus to finding an unbiasgq gstimator of the gradient. Quite trivially, choosing

an index j uniformly at random and computing the gradient of fj(x) gives such an unbiased estimator by
definition:
n

Eulfu(

SX—

= - )



whereP{u=j}=1/nforje ("] 0 MAresTRdiE A o BRGABHSEPE ALk of the
proceeds as follows. Begin with
gradient at xk: K

E[g" | x¥= vf(xk).
Next, take a step in direction g:

_ Xk+1: Xk

nkd’,
where nk is a step length (or learning rate in machine learning jargon).

While there are many variants of stochastic gradient descent, we consider the simplest version in
which gk is chosen by picking one of the gradients

Vfi(x) uniformly at random, and we refer to this
as SGD with uniform sampling. A commonly used generalization is mini-batch sampling, where one

chooses a small set of indices I c{1,..., n}at random, instead of only one. We also restrict to the

smooth setting without a regularization term; in the non-smoot sett'rlllg onelwould apply a proximal
operator. Since SGD involves random choices,{édnvergence results are stated in terms of the expected

value.LetUbearandomvariablewithdistribytionP i (X)= Vf(X
}or€[n].Then Eulvfulx)ls, Vii=1

) thab fU is an unbiased estimator of ﬁ /t\ssuming that  has a unique minimizer x *, we define the
empirical variance at the optimal point x * as

o2 = Euh v fgnx* ||1)2_]:ihi”:1v fx*)”z' (23.2)

We can now state the convergence result for stochastic gradient descent.

Theorem 23.1. Assume the function f is a-strongly convex and that the fi are convex and B-smooth for

€ [n]and 4B > a. Assume f has a unique minimizer x * and define the variance as in (23.2). Then for
any staring point x0, the sequence of iterates

0) o it gene)gqjegl Qyﬁ(‘ngvith uniform sampling and step
K 2 +202
Bl - X217 < — I op”

Proof. Asin the analysis of gradient descent,lave Y%et
{Vxk)xkU(,
k+1

PP = - xff2 -2 e AR

Taking the expectation conditional on ¢ we get

length n = 1/(2p) satisfies

Lt - xR 1= X - - 20 (ol Kk X (23.3)
+ |InVelkfied | xK]

where we used the fact that the expectation satisfies [ g ()%=, f (). For the last term we use the
bound

Bl v I IE ) 9000 - oo DA g2
sZEﬂ v (K) v fu (X*) b2 E|[VfLﬂx*)||2]
=2f g f (kv fu X*) B2 02,
U



Using the characterization of B smoothness from Lecture 21, namely

1. ,
1o luritiz e ki i)y

we get that

]
EhVf£f<k)—VfU(X*)HzIXr - -

) : 2
snl|Vfixkin=1 Y f ()
(33-4[); L ( *) K *>
< B— 5 x
s (Vf(xkini=1 V fi
B
y= (Vf(xk)xkini=1 ~ X
i B — *i(x),xk_x*>
z < V fn =1
=B X *

(VFf (x), xk>-,

where we used that of (x * )=0 for the last equality. Hence, we get the bound

B 1fe WX 1% < 28 (v F(x), Xk T2 «

Plugging this into (23.3), we get

B - )P X0 - X[ 2 - (20 22B) i x - x %y 43202,

Using the o-strong convexity, we get the bound

Cf XKD XK sy 5 xRy - f(xﬂ?‘“— X" _ x*

since f (x) (¥ ,sothat we get
(x*)
>
E[ x*||2|xk]5 (1
| xk+21 -

With step length n = 7/(2p) » and taking the expected value over all previous iterates, we get

g k *,2
1222 I =* 1

_no(l - T]B)m xK _ x*||2+ 2nN202.

(1 o 2
Ex™ " - Xxff21< - 1 Efjx" - X 121+82°
Applying this bound recursively (and moving the indeI%( down), we get
(1 Dk (25-11-2=0
k o 0 2,0 o)
S I ESEED S SE L I 8 ‘
(1 g i B
0 2 2
I T e e
g B’
where we used that 4B > a.

(23.4)



Example 23.2. Consider the problem of logistic regression where the aim is to minimize the objective
function

- fiw) = I n logTexp( )xTiw) - )yxTiiw
over a vector of weights v\l/This problem arises in the context of a binary classification problem with data
pairs (xi,yi)andyi < @}1 Setting P

e_ {_leTw
]
the resulting classifier is the function
p>17
h(w) =
< p/ 2
. 1
The function f s convex (Exercise 7.6(a)), and the gradieznt is
v = XTY - piwy),

whereX eRnxdis the matrix with the XTas rows,Y ~ (y1 ...,yn)hand p(w)eR" has coordinates

ooy

fXIO . n
= ;&;’ =

We can apply different versions of gradient desceritg this problem. Figure 1 shows the typical paths
of gradient descent and of stochastic gradient descent for a problem with 100 data points. Note that
using a naive approach to computing the gradient, one would need to compute 100 gradients at each
step. Stochastic gradient descent, on the other hand, fails to converge due to the variance of the gradient
estimator (see Figure 2).
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Figure 23.1: The path of gradient descent and of stochastic gradient descent with constant step length.

Extensions

The version of SGD described here is the most basic one. There are many possible extensions to the
methods. The include considering different sampling schemes, including mini-batching and importance
sampling. These sampling strategies have the effect of reducing the variance 02. In addition, improve-
ments can be made in the step length selection and when dealing with non-smooth function, where the
proximal operator comes into play.
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Figure 23.2: Convergence of gradient descent and SGD.

Notes

The origins of stochastic gradient descent go back to the work of Robbins and Monro in 1951 [21]. The
algorithm has been rediscovered many times, and gained popularity due to its effectiveness in training
deep neural networks on large data sets, where gradient computations are very expensive. Despite its
simplicity, a systematic and rigorous analysis has not been available until recently. The presentation in
this chapter is based loosely on the papers [11] and [2]. A more general and systematic analysis of SGD
that includes non-smooth objectives is given in [10]. These works also discuss general sampling
techniques, not just uniform sampling.






Part III

Deep Learning
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24

Neural Networks

Neural Networks are a powerful class of functions with a wide range of applications in machine learning
and data science. Originally introduced as simplified models of neurons in the brain, nowadays the
biological motivation plays a less prominent role. Instead, the popularity of neural networks owes to their
ability to combine generality with computational tractability: while neural networks can approximate
most reasonable functions to arbitrary accuracy, their structure is still simple enough so that they can be
trained efficiently by gradient descent.

Connectivity and Activation

We begin by considering the problem of binary classification using a linear function. Given a vector of

weights w
€ Rd and a hias term b € R, define the classifier

{1 WT +b 0
hw,bk)= + b=
< wPR= w T+ by 0 X +> 0

wT
We already encountered this problem when studying linear support vector machines. Visually, we can

represent this classifier by a node that takes d inputs (x1, . . ., xd), and outputs 0 or 1:

Such a unit is called a perceptron. One interpretation is that the node represents a neuron that fires if a

certain linear combination of inputs, wT x, exceeds a threshold _ _ .
-b. It is sometimes useful to approximate

the indicator with a smooth function, and a convenient candidate is the sigmoid

1
oM = 11 %

We can then replace the function h v i with the smooth function
g(x)=( OWTx+b),
A convenient property of the sigmoid function is that the derivative has the form

O'K)=a(x)(1 - o(¥,
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so that the gradient of g can be computed as
ve(x)= (OWTX+ b)(4_ O(WT %b)) w.
Other activation functions that are commonly used are the hyperbolic tangent, tanh(x), and the rectifiable

linear unit (ReLU), max _ ) _ o )
{x, O}. Figure 24.1 illustrates these different activations functions.

Sigmoid tanh ReLU

0.8 8

06 025 6

0.2 0.50 2

0.0

Figure 24.1: Activation functions

A feedforward neural network arises by combining various perceptrons by feeding the outputs of a
series of perceptrons into a new perceptrons, see Figure 25.5.

Figure 24.2: A fully connected neural network.

We interpret a neural network as consisting of different layers. To the k-th layer we associated a

linear map Wk : Rdk-1 - Rdk and a bias veck%or k € Rdk. One then applies the activation function
componentwise, to obtain a map
of'k Xbk).

The first layer is the input layer, while the last layer is the output layer. Hence, a neural network with
layers is a function of the form £, wheye the Fk are recursively defined as

Fl(x)=(0W1x b1
Frea()=6+ WS ()+bkl,
X (k+1

and Wk € Rdixdk-1,bkERdkfortkE (with 0).Thelayersbetweentheinputandoutput
layer are called the hidden layers.

A neural network is therefore just a parametrized function that depends on a possibly large number
of parameters. If we fix the architecture, that is, the number of layers * and the number of nodes



d=(d0,d1,...,d"), where di represents the number of nodes in each layer, we get a a hypothesis class
H={F:Rd—Rd " d:FisaNNwithformatd}.

We can use neural networks for binary classification tasks, for example, by settingd" =1 (only one output

layer), and declaring an output to be of class 1 if F (x) > 1/2 and 0 otherwise. Alternatively, we can have
two outputs and classify according to whether the first output is larger than the second. We can train the

neural network on data (xi, yi) i € {1, ..., n}, using our favourite loss function. Neural networks are

particularly attractive for two reasons:

1. The class of neural networks is rich enough to capture almost all functions of interest (see Lecture
25).
2. The structure is simple enough to train using gradient descent, by a computational implementation
of the chain rule known as backpropagation.
We discuss the computational aspect, backpropagation, first.

Backpropagation

Denote by W and b the concatenation of all the weight matrices and bias vectors. We denote by (i,\/\/h the

j)-th entry of the k-th matrix, and by bk
| the i-th entry of the k-th bias vector. L the
Given n data points

_ o ~{xilni=withcorrespondingoutputs{yi}nli=1andasmoothlossfunction
task is to minimize the function

f(w,bﬁ:: ~sn=aF (xi), yi).

Gradiend descent, or stochastic gradient descent, requires evaluating the gradient of a function of the form
fi(w, by = L(F " (xi), yi).

We will describe a method for computing the gradient of such a function efficiently. In what follows, set

x=xand.AlsowriteOiy=yia=x,andfork
E { 1 AR | ) })

zK). zk=Wkak-1+bk,ak=0( (24.1)

In particular, a* = F" (xi) is the output of the neural network on inpu¥. Moreover, setC = C(W , b =
L@", y) for the loss function.

For every layer k and coordinate | 1

}, define the sensitivities € {---ndk

skj._ 9C
’ Jbzk’

wherezkistj zk&kjhe-thcoordinateof.Thusjmeasuresthesensitivityofthelossfunctiontotheinput at the j-th

node of the k-th layer. Denote by &k o )
o . € Rdk the vector of 8kj forj € {1, ..., dk}. The partial

derivatives of C can be computed in terms of these quantities. In what follows, we denote by x X
o ythe

componentwise product, that is, the vector with entries xiyi.



Proposition 24.1. For a neural network with * layers and k ey, ..., 1, wehave

0C _ a1 9C =g (24.2)
ow i’ obk
k .o
fori,j e {1...,dH Moreover, the senbitivities & {* can be computed as follows:
\ \ ‘ , T
8" =(z), gy L@ V) 8=0" (W) &t (24.3)
fork e¢g...,"°-9.1

Proof. We begin by showing (24.2). Bor | note that by the chain rule, we have

_ oL@ y) T oL@, y) 8a)’ oLGk) -
O = 0zk ¥ = da  ozk -~ odak ' © (2).
i j=1ji !

For k < *, we compute dKin terms %ftk@k+1

j asfollows:
oC s=j=tl 6?”
Ok —= 0
0z OC ozk+1] _zk+1]}¢1 -0z
k Ozk+1 ozk

For the summands in the last expréssmn We use
SYdkzk+1j=wk+1jss=1

o(Z5) + bk+1

0zk+1
o J .. =wk+1
so that the derivatives evaluate to iasz|
- . Ol(Zk)-

Putting everything together, we arrive at

d

Ski okl Wk+1 g' = o'( ( W k+1 To.k+1) i
ks 1}<*1 i #) = 0'(F) . ((w T

The expressions for the partial derivatives of C with respect to the weights W and the bias b are computed
in a straight-forward way using the chain rule. More precisely, at the k-th layer write

d 1
zki= bki.
vvkak |J1 +
Ekj =1
The claimed expressions for the derivatives then follow by applying the chain rule,

oC — gozik' — 6k| a}.<4.
ow 0zko k ’
X Wij

and similarly for the derivative with respdtt tobk O
i



For the common quadratic loss function

L g5 - yI2,
we get
Va' -
which can be computed easily from the function value F (j andy. Other differentiable loss functions

may lead to different terms. Given initial weights W and bias terms b, we can compute the values ak and
zk using a forward pass, that is, by applying (24.1) recursively. We can then compute the sensitivities 6k

L@ Y =ary,

using (24.3), and the partial derivatives of the loss function using (24.2), starting at layer *. This way o{‘
computing the gradients is called backpropagation. We note that choosing the sigmoid & as activation
function, the computation of the derivative o’(x) is easy. The whole process of computing the gradient of a
neural network thus reduces to a simple sequence of matrix-vector product operations and sigmoids.

Example 24.2. Consider the following setting with n = 10 points. We train a neural network with four
layers and dimensions d = (d0, d1, d2, d3) = (2, 2, 3, 2) using stochastic gradient descent. The neural
network outputs a vector in R2 and classifies an input point according to whether the first coordinate is
greater or smaller than the second coordinate. Figure 24.3 shows the decision boundary by the neural
network based on 10 training points, and the display on the right shows the error per iteration of

stochastic
gradient descent.
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Figure 24.3: Training a neural network for classification and the error of stochastic gradient descent.

Notes

The study of neural networks has its origin in pioneering work by McCulloch and Pitts in the 1940s.
Another seminal work in the history of artificial neural networks is the work by Rosenblatt on the
Perceptron [22]. The idea of backpropagation was explicitly named in [23] and is closely related to
automatic differentiation. Automatic differentiation has been discovered independently many times, and
an interesting overview is given here: [12]. The content of this lecture is based on the excellent tutorial
[13]. A comprehensive modern treatment of the subject can be found in the book [8].
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