
MATHEMATICSofMACHINELEARNING

by

March 2020

Contents

13 Optimization

14 Convexity

15 Lagrangian Duality

16 KKTConditions

Contents

1 Introduction

2 OverviewofProbability

3 BinaryClassification

4 FiniteHypothesisSets

5 ProbablyApproximatelyCorrect 6

LearningShapes

7 RademacherComplexity

8 VCTheory

9 TheVCInequality

10 GeneralLossFunctions

11 Covering Numbers

12 ModelSelection

6

7

7

9

8

3

8

7

2

3

2

7

3

1

3

5

3

9

4

5

4

9

5

3

5

7

6

1

ii

1

1

1
I

II Optimization

Statistical Learning Theory

65

21

ii

17 Support Vector Machines I

18 Support Vector Machines II

19 IterativeAlgorithms

20 Convergence

21 GradientDescent

22 Extensions of Gradient Descent

23 Stochastic Gradient Descent

24 NeuralNetworks

25 Universal Approximation

26 Convolutional Neural Networks

27 Robustness

28 Generative Adversarial Nets

Bibliography

12

7

13

3

13

7

14

3

14

7

15

3

91

95

101

105

109

115

119

III Deep Learning 125

1

Introduction

“No computer has ever been designed that is ever aware
of what it’s doing; but most of the time, we aren’t
either.”

— Marvin Minsky, 1927-2016

1

Machine learning lies at the intersection of approximation theory, probability theory,
statistics, and optimization theory. We illustrate the interplay of these fields with a few
basic examples.
In its most basic form, the goal of machine learning is to come up with (learn) a function

whereX is a space of inputs or features, and consists of outputs or responses. The input space
X is usually modelled as a metric space (such as Rd), and the inputs could represent images, texts,
emails, gene sequences, networks, financial time series, or demographic data. The output could consis
of quantitative values, such as a temperature or the amount of a certain substance in the body, or of

Learning is the process of transforming information and experience into knowledge and
understand-

ing. Knowledge and understanding are measured by the ability to perform certain tasks
independently. Machine Learning is therefore the study of algorithms and models for
computer systems to carry out certain tasks independently, based on the results of a
learning process. Learning tasks can range from solving simple classification problems,
such as handwritten digit recognition, to more complex tasks, such as medical diagnosis
or driving a car.

Machine learning is part of the broader field of Artificial Intelligence, but distinguishes
itself from more traditional approaches to problem solving, in which machines follow a

strict set of rules they are provided with. As such, it is most useful for tasks such as
pattern recognition, that may be simple for humans but where precise rules are hard to

come by with, or for tasks that allow for simple rules, but where the complexity of the
problem makes any rule-based approach computationally infeasible. An illustrative

example of the latter is the recent success of DeepMind’s AlphaGo 1, a computer
program based on reinforcement learning, at achieving super-human performance at

the board game Go (围棋). Even though the rules of the game are simple, the task of
beating the best human players seemed impossible only a

decade ago due to the daunting complexity that ensues from the number of possible
positions.

A General Framework for Learning

h: X → Y ,
Y

1https://deepmind.com/research/case- studies/alphago- the- story- so- far

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far

Figure 1.1: The MNIST (Modified National Institute of Standards and Technology,
lecun.com/exdb/mnist/) dataset is a large collection of images of hand-written digits, and is a
frequently used benchmark in machine learning.

Example 1.2. (Clustering) In clustering applications, one observes data {xi}ni=1,andthegoalisto
subdivide the data into a number of distinct groups based on similarity, where similarity is measured
using a distance function. Figure 1.2 shows an example of an artificial clustering problem and a possible

qualitative or categorical values, such as {YES,NO} or {0,1,2,3,4,5,6,7,8,9}. The first type of
problem is usually called regression, while the latter is called classification. The function h is sometimes
called a hypothesis, a predictor, or a classifier. A classifier h that takes only two values (typically 0 and
1,or

−1 and 1) is called a binary classifier. In a machine learning scenario, a function h is chosen from
a predetermined set of functions
H, called the hypothesis space.

Machine learning problems can be subdivided into supervised and unsupervised learning problems. In
supervised learning, we have at our disposal a collection of input-output data pairs

andthegoalistolearnafunctionh: fromthisdata.Thecollectionofpairs {(xi,yi)}ni=1iscalled
the training set. In unsupervised learning, one does not have access to a training set. The prototypical
example of an unsupervised learning task is clustering, where the tasks is to subdivide a given data set
into groups based on similarities. This course will deal mainly with supervised learning.

Example 1.1 (Digit recognition). Given a dataset of pixel matrices, each representing a grey-scale image,
with associated labels telling us for each image the number it represents, the task is to use this data to
train a computer program to recognise new numbers (see Figure 1.1). Such classification tasks are often
carried out using deep neural networks, which constitute a powerful class of non-linear functions.

{ i ,

X → Y

⊂ X × Y ,x y i}ni=1

http://yann.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

8

6

4

2

0

3 2 1 0 1 2 3

8

6

4

2

0

3 2 1 0 1 2 3

where the X1,...,Xp are covariates that describe certain characteristics of a system and Y is the
response. Given a set of input-output pairs (xi, yi), arranged in a matrix X and a vector y, we can guess
thecorrectβ=(β,β,...,β>01p)bysolvingtheleast-squaresoptimizationproblem

solution. The notion of distance used depends on the application. For example, for binary sequences or
DNA sequences one can use the Hamming metric, which simply counts the positions at which two
sequences differ. Clustering is used extensively in genetics, biology and medicine. For example, clustering
can be used to identify groups of genes (segments of DNA with a function) that encode proteins which are
part a common biological pathway. Other uses of clustering are market segmentation and community
detection in networks.

Figure 1.2: A collection of random points on the plane. The image on the right shows the four clusters as
determined by the k-means algorithm.

One often makes the simplified assumption that the observed training data comes from an unknown
function f :

X → Y. The goal is to approximate the function f with a function h from a hypothesis class
H,basedonlyontheknowledgeafinitesetofsamples{xi,yi}n yi≈f(xii=1,whereweassume)for
i

∈ [n] := {1, . . . , n}. Which class of functions is adequate depends on the application at hand, as well
as on computational and statistical considerations. In many cases a linear function will do well, while in
other situations polynomials or more complex functions, like neural networks, are better suited.
Example 1.3. (Linear regression) Linear Regression is the problem of finding a relationship of the form

Figure 1.3 shows an example of linear regression.

Example 1.4. (Text classification) In text classification, the task is to decide to which of a given set of
categories a given text belongs. The training data consists of a bag of words: this is a large sparse matrix,
whose columns represent words and the rows represent articles, with the (i, j)-th entry containing the
number of times word j is contained in text i.

Y β β1X1 βp Xp ,

Approximation Theory

= +

minimize‖β

+ +· · ·

− y ‖ .X β

0

2
2

12

10

8

6

4

2

2 4 6 8

Mass

10 12

12

10

8

6

4

2

0 2 4 6 8

M a s s

10 12 14

B
a
s
a
l
m

e
t
a
b
o
li
c
 r

a
t
e

with w
classe
s

dandb
∈ R. Given a text, represented as a row of the dataset x, it is classified into one of two

,
−1}, depending on whether h(x) > 0 or h(x) < 0.
(Deep Neural Networks) Neural networks are functions of the form

Figure 1.3: The relationship of mass to the logarithm of the basal metabolic rate in mammals. The data
consists of 573 samples taken from the PanTHERA database, and the example featured in the episode
Size Matters of the BBC series Wonders of Life. The right images shows the regression line determined
using linear least squares.

Goal Soup
Article1 5 0
Article2 1 7

For example, in the above set we would classify the first article as "Sports" and the second one as
"Food". One such training dataset is the Reuters Corpus Volume I (RCV1) 2, an archive of over 800,000
categorised newswire stories. A typical binary classifier for such a problem would be a linear classifier
of the form
h (x > +

whereeachfisthecomponen-wisecompositionofan Rdk−1k activationfunctionσwithalinearmap →
Rdk , x

→7Wkx+bk.Anactivationfunctioncouldbethesigmoidσ(x)=1/(1+e−x),which
takes values between (0, 1), and which can be interpreted as “selecting” certain coordinates of a vector
depending on whether they are positive or negative (see Figure 1.4). The coefficients wkij of the matrix W
k in each layer are the weights, while the entries of bk are called the bias terms. The weights and bias
terms are to be adapted in order to fit observed input-output pairs. A neural network is usually
represented as a graph, see Figure 1.5. Neural networks have been extremely successful in pattern
recognition, and are widely used in applications ranging from natural language processing to machine
translation and medical diagnostics.

One of the earliest theoretical results in approximation theory is a theorem by Weierstrass that shows
that we can approximate any continuous function on an interval to arbitrary precision by polynomials.

Example 1.5.

f f

b,

f1,

R
+1

) = w x

−

∈

{

◦ ◦ · · · ◦` ` 1

2

http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://www.bbc.co.uk/programmes/b01qygxz
http://www.bbc.co.uk/programmes/b01qygxz

(Weierstrass).

The notion of best fit is formalized by using a
the mismatch between a prediction on a given input

Figure 1.4: The sigmoid function

. A loss function
and an element y

Figure 1.5: A neural network. Each layer correspond to applying a linear map to the outputs of the
previous layer, followed by an activation function. Each arrow represents a weight. For example, the
transition from the first layer to the second is a map R3

→ R4, and the weight associated with the arrow
from the second node in layer 1 to the first node in layer 2 is the (1, 2)-entry in the matrix defining the
corresponding linear map.

+ measures
of

∈

This theorem is remarkable because it shows that we can approximate any continuous function on a
compact interval using only a finite number of parameters, the coefficients of a polynomial. The problem
with this theorem is that it gives no bound on the size of the polynomial, which can be rather large. It also
does not give a procedure of actually computing such an approximation, let alone finding one efficiently.
We will see that neural networks have the same approximation properties, i.e., for every continuous
function on an interval can be approximated to arbitrary accuracy by a neural network. There are many
variations on such results for approximating a class of functions through a simpler class, and we will be
interested in cases where such approximations can be efficiently computed. One way of finding good
approximating functions is by using optimization methods.

polynomial such that
Let be a continuous function on]. Then for any there exists a

‖ − p ‖∞

∈ X

− | ≤

L :Y × Y → R
∈ Y. The

=max
|x[]

p(x)
f

f f(x)

[a,b

p(x) ε.

ε > 0Theorem 1.6

loss function
x empirical risk

a,b

Optimization

and the

a function is the average loss

, which takes the general form

) over the training data,

One would then aim to find a function h among a set of candidate function
when applying the function to the training data:

that minimizes the loss

{1ifh(x)=yL(h(x),y)=1{h(x)=y}=.0ifh(x)6 = y
As this function is not continuous, in practice one often encounters continuous approximations. A binary
classifier is often implemented by a function h: X → [0,1] that provides a probability of an input
belonging to a class. If h(x) > 1/2, then x is assigned to class 1, while if h(x)

≤ 1/2, then x is assigned
to class 0. A common loss function for this setting is the log-loss function, or cross-entropy,

minimizeR̂ ˆ(h). (1.1)
h
∈ H

Problem (1.1) is an optimization problem. Minimizing over a set of functions my look abstract, but
functions in H are typically parametrized by few parameters. For example, when the class H consists of
linear functions of the form β0 +β1x1 +

· · ·+βpxp, as in Example 1.3, then the optimization problem (1.1)
amounts to minimizing a function over Rp+1. In the case of neural networks, Example 1.5, one optimizes
overtheweightswkandbiastermsbkiji.

The form of the loss function depends on the problem at hand and is usually derived from statistical
considerations. Two common candidates are the square error for regression problems, which applied to
a function h: Rd→ R takes the form

{−−−if(1.2).
−hx)) if
The function is designed to take on large values if the class predicted by h(x) does not match y, and can
be interpreted in the context of maximum-likelihood estimation.

Finding or approximating a minimizer of a function falls into the realm of numerical optimization.
While for linear regression we can solve the relevant optimization problem (least-squares minimization)
in closed form, for more involved problems such as neural networks we use optimization algorithms such
as gradient descent: we start with an initial guess and try to minimize our function by taking steps in
direction of steepest descent, that is, along the negative gradient of the function. In the case of composite
functions such as neural networks, computing the gradient requires the chain rule, which leads to the
famous backpropagation algorithm for training a neural network that will be discussed in detail.

There are many challenges related to optimization models and algorithms. The function to be
minimized may have many local minima or saddle points, and algorithms that look for minimizers
may find any one of these, instead of a global minimizer. The functions to be minimized may not be
differentiable, and methods from the field of non-smooth optimization come into play. The biggest
challenge for optimization algorithms in the context of machine learning, however, lies in the particular

h

L(h() ,y

L(h() ,y

L(h(

y

,

y

y
y

,

h) =

=

L(h(xi),

R̂ ˆ 1(h):=
n

i

log (h(x))

log (h(x))
log(1 (

) = (h(x

(1

)

)

)

)

) log(1

=1
= 0

())

:X → Y

− y

−
−

6

−

H

x

x

xi y

x

yi

n
i∑=1

2

indicator loss function

Given a classifier and a loss function

The expected value of this random variable is
n

E

,the

1 1 n

that are identically distributed and independent copies of (
becomes a random variable
n

. Given a classifier

is the expected value

Suppose we have a binary classification task at hand, with Y = {0, 1}. We could learn the following
function from our data:
yi ifx=xi,
h(x) =
1 otherwise.
This is called learning by memorization, since the function simply memorizes the value yi for every
seen example xi. The empirical risk with respect to the unit loss function for this problem is
n

h, the empirical risk

6 } n
i=1

Nevertheless, this is not a good classifier: it will not perform very well outside of the training set. This is
an example of overfitting: when the function is adapted too closely to the seen data, it does not generalize
to unseen data. The problem of generalization is the problem of finding a classifier that works well on
unseen data.

To make the notion of generalization more precise, we assume that the training data points (xi, yi)
are realizations of a pair of random variables (X, Y), sampled from an (unknown) probability distribution
on the product

X × Y. The variables X and Y are in general not independent (otherwise there would
be nothing to learn), but are related by a relationship of the form Y = f(X) + ε, where ε is a random
perturbation with expected value E[ε] = 0. One could interpret the presence of the random noise ε as
indicative of uncertainty or missing information. For example, when trying to predict a certain disease
based on genetic markers, the genetic data might simply not carry enough information to always make a
correct prediction. The function f is called the regression function. It is the conditional expectation of
Y given a value of ,

f(x [=x].

If L(h(x), y) = 1 {h(x) = y} is the unit loss, then this is simply P{h(X) = Y }, i.e., the probability of
misclassifying a randomly chosen input-output pair. The training data can be modelled as sampling form
n pairs of random variables

() (n

form of the objective function: it is given as a sum of many terms, one for each data point. Evaluating such
a function and computing its gradient can be time and memory consuming. An old class of algorithms that
includes stochastic gradient descent circumvents this issue by not computing the gradient of the whole
function at each step, but only of a small random subset of the terms. These algorithms work surprisingly
well, considering that they do not make use of all the information available at every step.

|
generalization risk

Statistics

∈ H

6 6

[R̂ ˆ 1(h)]=
n

i

R̂ ˆ 1(h)=

) =

():=E

R̂ ˆ 1(h)=
n

i

(

i)] = E

i)=yi

)
)

)].

=0.

)]=

X

h L

R h

X , Y

E[L(h(Xi), Y

Y X

[L(h(X), Y

, . . . , X , Y

X , Y

L(h(Xi), Yi).

[L(h(X), Y R(h),

x

∑=1

{

∑1{h

∑=1

E

The ideas from approximation theory, optimization and statistics that underlie modern machine learning
are old. Linear regression was known to Legendre and Gauss. The Weierstrass Approximation Theorem

Figure 1.6: The data consists of 15 samples from the graph of a cosine function with added noise. The
three displays show an approximation with a linear function, with a polynomial of degree 5, and with a
polynomial of degree 15. The linear function has a large error on both the training set and in relation to the
true function. The polynomial of degree 15, on the other hand, has zero error on the training data (a
polynomial of degree d can fit d + 1 points with distinct x-values exactly), but it will likely perform poorly
on new data. This is an example of overfitting: more parameters in the model will not necessarily lead to a
better performance.

The field of Statistical Learning Theory aims to understand the relation between the generalization
risk, the empirical risk, the capacity of a hypothesis class H, and the number of samples n. In particular,
notions such as the capacity of a hypothesis class are given a precise meaning through concepts such as
VC dimension, Rademacher complexity, and covering numbers.

where we used the linearity of expectation and the fact that the (Xi, Yi) are independent and identically
distributed (i.i.d). The empirical risk R̂ ˆ(h) is thus an unbiased estimator of the generalization risk R(h).

Example 1.7. The loss function is often chosen so that the problem of empirical risk minimization
becomes a maximum likelihood estimation problem. Consider the example where Y takes values in
{0, 1} with probability P{Y = 1 | X = x} = f(x). Conditioned on X = x, Y is a Bernoulli random
variable with parameter p = f(x), and the log-loss function (1.2) is precisely the negative log-likelihood
function for the problem of estimating the parameter p.

When looking for a good hypothesis h, all we have at our disposal is the empirical risk function
constructedfromthetrainingdata.Itturnsoutthatthequalityofanempiricalriskminimizerĥˆfroma
hypothesis class

H can be measured by the estimation error, which compares the generalization risk of
ĥˆtothesmallestpossiblegeneralizationriskin

H, and the approximation error, which measures how
small the generalization risk can become within

H. There is usually a trade-off between these to errors:
if the class of functions

H is large, then it is likely to contain functions with small generalization risk
and thus have small approximation error, but the empirical risk minimizer ĥˆ is likely to “overfit” the data
and not generalize well. On the other hand, if H is small (in the extreme case, consisting of only one
function), then the empirical risk minimizer is likely to be close to the best possible hypothesis in

H, but
the approximation error will be large. Figure 1.6 shows an example in which data from a function with
noise is approximated by polynomials of different degrees.

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.0

0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.0

0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.0

0.2 0.4 0.6

Fitted model

True function

0.8 1.0

Notes

was published by Weierstrass in [31], see [28, Chapter 6] for an account and more history on
approximation theory. Neural networks go back to the seminal work by McCulloch and Pitts from 1943
[16], followed by Rosenblatt’s Perceptron [22]. The term “Machine Learning” was first coined by Arthur
Samuel in 1959 [24]; at the time, “Cybernetics” was still widely used. Gradient descent was known to
Cauchy, and the most important algorithm for deep learning today, Stochastic Gradient Descent, was
introduced by Robbins and Monro in 1951 [21]. The field of Statistical Learning Theory arose in the 1960s
through seminal work by Vapnik and Chervonenkis, see [29] for an overview. For an account of
mathematical learning theory, see [5].
Research in machine learning exploded in the 1990s, with striking new results and applications appearing

at breathtaking pace. Still, apart from some of the more theoretical developments in learning theory and
high-dimensional probability, these breakthroughs rarely relied on mathematics that was not available 50

years ago. So what has changed since the early days of cybernetics? The main reason for the sudden
surge in popularity is the availability of vast amounts of data, and equally important, the computational

resources to process the data. New applications have in turn led to new mathematical
problems, and to new connections between various fields.

2

Overview of Probability

A

where is typically

is a measurable map

, or a finite set . For a measurable set

Wewillusuallyuseupper-caseletters forrandomvariables,lower-caseletters values that
these can take, and x, y, z if these are vectors in some Rd.

11

, we write

for the

i i

This bound is sometimes also referred to as the zero-th moment method. We say that an event A holds
almost surely if P(A) = 1 (note that this does not mean that the complement of A in Ω is empty).

A probability space is a triple (Ω, F,), consisting of a set Ω, a σ-algebra F of subsets of Ω, called
events, and a probability measure . That

F is a σ-algebra means that it contains ∅ and Ω and that it is
closed under countable unions and complements. The probability measure P is a non-negative function
P: [0,1]suchthatP(
∅)=0, (Ω)=1,and

In this lecture we review relevant notions from probability theory, with an emphasis on conditional
expectation.

for a countable collection {Ai} with Ai ∩ A = ∅ for i = j. We interpret P(A ∪ B) as the probability of A
or B happening, and P(A

∩ B) as the probability of A and B happening. Note that (A ∪ B)c = Ac ∩ Bc,
where Ac is the complement of A in Ω. If the Ai are not necessarily disjoint, then we have the important

Probability spaces

Random variables

union bound

random variable

)

)(X

Ai

X : Ω→ X ,
{ 0 , 1 , . . . , k }

∈ A) := P({ω ∈ Ω: X(ω)

X, Y , Z

(Ai).

A .

A

x, y, z

F →

X

6

∈ }

⊂ XR, Rd, N

P

P
P

P

(⋃)∑PAi=P(ii

j

(⋃)∑PAi≤P

Example 2.1.
X

marginal distributions.

and define
Then

fork
∈ {0, 1, . . . , n} and some

of Bernoulli random variables,
have the value 1.

Y

The ensuing distributions for X and are called the

Example 2.2. Three of the most common distributions are:

•Bernoullidistribution ,takingvaluesin
{ }

and defined by

for some p
∈[0,1].WecanreplacetherangeX { }byanyothertwo-elementset,forexample

{−1, 1}, but then the relation to other distributions may not hold any more.

• BinomialdistributionBin(n,p),takingvalue

(sin){0,...,n}anddefinedbynP(X=k)=pk(1−p)n−k(2.1)k

p
∈ [0, 1]. We can also write a binomial random variable as a sum

X=X1+ +Xn,sinceX=kifandonlyifkofthesummands

If all the information we get about is from , then we can only determine whether the result of rolling a die
gives an even number greater than 3 or not, but not the individual result.

The map A
→7P(X∈A)forsubsetsofXiscalledthedistributionoftherandomvariable.The

distribution completely describes the random variable, and there will often be no need to refer to the
domain Ω. If F : X → Y is another measure map, then F (X) is again a random variable. In particular, if
X is a subset of Rd, we can add and multiply random variables to obtain new random variables, and if X
and Y are two distinct random variables, then (X, Y) is a random variable in the product space. In the
latter case we also write P(X

∈ A, Y ∈ B) instead of P((X, Y) ∈ A × B). Note that this also has an
interpretation in terms of intersections of events: it is the probability that both X
∈AandY ∈B.
A discrete random variable takes countable many values, for example in a finite set

{1,.. . ,k}orin
N. In such a case it makes sense to talk about the probability of individual outcomes, such as P(X = k)
for some k

∈ X . An absolutely continuous random variable takes values in R or Rd for d > 1, and is
defined as having a density ρ(x) = ρX , such that

A random variable specifies which events “we can see”. For example, let Ω = {1, 2, 3, 4, 5, 6}
:Ω 0,1
}bysetting 1{ ,where1denotestheindicatorfunction.

In the case where X = R, we consider the cumulative distribution function (cdf) P(X ≤ t) for t ∈ R.
The complement, P(X > t) (or P(X

≥ t)), is referred to as the tail. Many applications are concerned
with finding good bounds on the tail of a probability, as the the tail often models the probability of rare
events. If X is absolutely continuous, then the probability of taking a particular single value vanishes,
P(X = a) = 0. For a random variable Z = () taking values in

X × Y, we can consider the joint
density ρZ(x,y), but also the individual densities of and , for which we have

P(

Ω

Ber()

P(

∫(x)=

=1)=

() =

1
=1)= 3

∫)= () d

4,6 } }
2

P(X=0)=. 3

0,1

P(X=0)=1 =0,1

→ {

· · ·

∈ {

−

ρX

Y

p

X

(x)

P(X
∈

X ω

X

X

A

p,

ω

,

ρ x

X
X , Y
X Y

ρZ (x, y) dy.

x.

p

A

•
on

N
and with density

For an absolutely continuous random variable with density

), also referred to as Gaussian, with mean

, it is defined as

The expected value of a Bernoulli random variable with parameter is

The expectation (or mean, or expected value) of a discrete random variable is defined as

and variance

The linearity of expectation then immediately gives the expectation of the Binomial distribution with
parameters n and p. Since such a random variable can be written as 1 +

· · · + Xn, with Xi
Bernoulli, we get
E[X E[X1+ +Xn E[X1 +E[n

This is the most important distribution in probability and statistics, as most other distributions can
be approximated by it.

2, defined

This would be (slightly) harder to deduce from the direct definition (2.1), when one would have to use the
binomial theorem.

IfF:
X → Y is a measurable function, then the expectation of the random variable can be

expressed

∫ F(X)as E[F(X)]=F(x)ρ(x)dx (2.2)X

X

Note that the expectation does not always need to exist since the sum or integral need not converge. When
we require it to exist, we often write this as E[X] <∞ .
Example 2.3. The expectation of a Bernoulli random variable with parameter p is E[X] = p. The
expectation of a Binomial random variable with parameters n and p is E[X] = np. For example, if one
were to flip a biased coin that lands on heads with probability p, then this would correspond to the number
of heads one would “expect” after n coin flips. The expectation of the normal distribution N (µ, σ2) is µ.
This is the location on which the “bell curve” is centred.

One of the most useful properties is linearity of expectation. If X1, . . . , Xn are random variables
takingvaluesinasubsetofdand1 n

∈ R, then

Example 2.4.

Normal distribution

· · ·

· · ·

√

· · ·

· · ·

] =

+

] = 1 ·

() =

n] = a1

] =

1
2

=1)+0 ·

] +

1] +

=k).

+

=0)=

=

]=

[a1 X1

[X

(µ, σ2

[X

a , . . . , a

+anX

(X

γ x e
πσ

[X

(X

ρ(x)

ρ(x) dx.

(X

.

a

p.

X

X

E[Xn].

µ

X

n

p.

p

σ
R

R

E

E

E

P

E

P

P

−
(x −µ)2

2σ2

Expectation

∑]=k·k∈X

∫E[X]=

n

Then

A set of random variables {Xi} taking values in the same range
{Xi1,...,Xi}andanysubsets1kj,,wehave

is called

in the case of an absolutely continuous random variable, and similarly in the discrete case.
An important special case is the indicator function

Using this identity, one can deduce bounds on the expectation from bounds on the tail of a probability
distribution.
The variance of a random variable is the expectation of the square deviation from the mean:

The variance measures the “spread” of a distribution: random variables with a small variance are more
likely to stay close to their expectation.

Example 2.5. The variance of the normal distribution is σ2. The variance of the Bernoulli distribution is
p(1− p) (verify this!), while the variance of the Binomial distribution is np(1 − p).

The variance scales as Var(aX + b) = a2Var(X). In particular, it is translation invariant. The
variance is in general not additive (but it is, if the random variables are independent).

In words, the probability of any of the events happening simultaneously is the product of the probabilities
of the individual events. A set of random variables

{Xi} is said to be pairwise independent if every
subset of two variables is independent. Note that pairwise independence does not imply independence.

if for any subset

E[1 {X∈A}]=P(X∈A), (2.3)
as can be seen by applying (2.2) to the indicator function. The identity (2.3) is useful, as it allows to
properties of the expectation, such as linearity, in the study of probabilities of events. The expectation also
has the following monotonicity property: if 0

≤ X ≤ Y , where X, Y are real-valued random variables,
then E[X]
≤ [Y].

Another important identity for random variables is the following. Assume X is absolutely continuous,
takes values in , and X≥ 0. Then

1

(Xi 1

F (X

A

∈ A 1 , . . . , X i k

[X

X

X

j

Ak

A

X

k

PXi1

P(X > t

[X

A

t.

X
X

A
A
.

(Xi k A .

) = 1

Var(

∫]=0

) = E [(

) = (

= 1
0

) d

)

])2].

)

{ ∈

⊂ X ≤ ≤

∈

}

−

∈

X

∈

∈

6

· · · ∈

{

E

R

P

E

E

P

∞

1

independent

Independence

k

1 We will not always list the formulas for both the discrete and continuous, when the form of one of these cases can be easily
guessed from the form of the other case. In any case, the sum in the discrete setting is also just an integral with respect to the
discrete measure.

Example 2.6.
toss
,
and
p

which is the random variable that for each

Theorem 2.7 (Law of Large Numbers).
n

takes the limit

Since each random variable is, by definition, a function on a sample space
pointwise limit

as value.2

, we can consider the

Example 2.8. Let each Xi be a Bernoulli random variable with parameter p. One could think this as flipping
a coin that will show heads with probability p. Then Xn is the average number of heads when
flipping the coin n times. The law of large numbers asserts that as n increases, this average approaches p
almost surely. Intuitively, when flipping the coin a billion times, the number of heads we get divided by a
billion will be indistinguishable from p: if we do not know p we can estimate it in this way.

6

Intuitively,theinformationthat andY alreadyimplies ,soaddingthisconstraintdoes
not alter the probability on the left-hand side.
We say that a set of random variables

{Xi} is i.i.d. if they are independent and identically distrib-
uted. This means that each Xi can be seen as a copy of X1 that is independent of it, and in particular all
the Xi have the same expectation and variance.

One of the most important results in probability (and, arguably, in nature) is the (strong) law of large
numbers. Given random variables{ i},definethesequenceofaveragesas

Assume you toss a fair coin two times. Let X be the indicator variable for heads on the first
the indicator variable for heads on the second toss, and Z the random variable that is 1 if X = Y

if
6= Y . Taken individually, each of these random variables is a Bernoulli random variable with

. They are also pairwise independent, as is easily verified, but not independent, since

In applications it is often not possible to get precise expressions for a probability we are interested in,
most often because we don’t know the exact distribution we are dealing with and only have access to
parameters such as the expectation or the variance. There are several useful inequalities that help us
bound the tail or deviation probabilities. For the following, we assume
X⊂ R .

• Jensen’s Inequality Let f : R
→ R be a convex function, that is, f(λx + (1 − λ)y) ≤ λf(x) +

(1
− λ)f(y) for λ ∈ [0, 1]. Then

f([X [(

µ <

Y
X

/

(X , Y

X

X n X1n

limX→ ∞ n , n
ω
∈ Ω
{ X i }
X
P(limXn µ
n

X

X .

f X)] .

X n (ω)

[X1

0
= 1 2

= 1

1= (+

])

1 1=1,Z=1)= = =P(4 8
X = 1 = 1

+

=)=1.

)

limn

= 1)P(Y = 1)P(Z

Z = 1

Ω

=1).

] =
∞

≤

· · ·

P

E E

E

n

Let beasequenceofi.i.d.randomvariableswith
.Thenthesequenceofaverages convergesalmostsurelytoµ:

→ ∞

→ ∞

Some useful inequalities

2 That this is indeed a random variable in the formal sense follows from measure theory, we will not be concerned with those
details.

In particular,

Given events with ,the

For any

from which we get the sometimes useful identity

|

whereBcdenotesthecomplementof in .
Sincebyexchangingtheroleof and weget

Bayes rule for conditional probability:

(“first moment method”) For

(“second moment method”) For

of conditioned on

defined whenever both A and B have non-zero probability. These concepts clearly extend to random
variables, where we can define, for example,

Note that both the Chebyshev and the exponential moment inequality follow from the Markov
inequality applied to certain transformations of X.

), we arrive at the famous

is defined as

Note that if X and Y are independent, then the conditional probability is just the normal probability of X:
knowing that Y

∈ B does not give us any additional information about X! If we fix an event such
as

{Y ∈ B}, then we can define the conditioning of the random variable X to this event as the random
variable X′ with distribution
′)

(2.4)

Oneinterpretsthisastheprobabilityof ifweassume .Thatis,ifweobservedB,thenwereplacethe whole set Ω by
B and consider B to be the new space of events, considering only the part of events A that lie in B. We can
rearrange the expression for conditional probability to

• Markov’sInequality

• Chebyshev’sInequality

• ExponentialMomentInequality

conditional probability

(X

A , B

∈ A | Y B

B

A

(X ∈ A | Y

X

(A| B

(X

(A
∩ B

P A B

B
A B

P(A| B

A

B

(X

B

E[X]

s ,λ

≥ λ)

λ

A| B

(A
∩ B

X A)=P(X A | Y
X A

|Y B)=1.

(A
∩B) .

(B)
B

A| B c

(B | A)P(A),
P(B)

B),

∈ B .

A

B| A

P(X A,Y B) .P(X B)

Bc),

X 0andλ>0,

E[X]
.λ
λ>0,

λ
≤Var(X).λ2

A

B⊂

∈

6

|

∈

∈ 6

−

∈

≥

| ≥

≥ ,

≤ −

∈

∈

≥

)
≤

∈ ∈

∈

Ω (

(

) = 0

(

) + (

(

P
) =

)=()P(

Ω

) =

) =

)=P(

)

0

e

)+P(

)P(

[e

)=P(

)P(

)P(

P

P

P

P

P

P

P

P

P

P

P

P

P
P

Esλ sX].

Conditional probability and expectation

·

Hence, using Bayes’ rule, we conclude that

Wereplacethe ρofwithanupdateddensity
Y = y has been observed when computing the expectation of .
When looking at (2.5) and (2.7), we get a different number E[

assume
Y to be the space where Y takes values. Hence, we can
as follows:
[y [

Assuming that only 1% of the participants have taken the drug, which translates to
find that the overall probability of a positive test result is, using (2.4),

,we

Example 2.9. Consider the case of testing for doping at a sports event. Let X be the indicator variable for
the presence of a certain drug, and Y the indicator variable for whether the person tested has taken the
drug. Assume that the test is accurate when the drug is present and 99% accurate when the drug is not
present. We would like to know the probability that a person who tested positive actually took the drug,
namely P(Y = 1
| .Translatedintoprobabilisticlanguage,weknowthat

That is, we get the surprising result that even though our test is very unlikely to give false positives and
false negatives, the probability that a person tested positive has actually taken the drug is only 50%. The
reason is that the event itself is highly unlikely.

We now come to the notion of conditional expectation. Let X,Y be random variables. If X is
discrete, then the conditional expectation of X c

∑onditionedonaneventY=yisdefinedasE[X|Y=y]=kP(X=k|Y=y).(2.5)k

This is simply the expectation of the random variable X′ with distribution P(X′
∈A)=P(X∈A|

Y = y). Intuitively, we assume that Y = y is given/has been observed, and consider the expectation of X
under this additional knowledge.
Example 2.10. Assume we are rolling dice, let X be the random variable giving the result, and let Y be
the indicator variable for the event that the result is at most 4. Then E[X] = 3.5 and E[X |Y =1]=2.5
(verify this!). This is the expected value if we have the additional information that the result is at most 4.

In the absolutely continuous case we can define a conditional density

ρX,Y (x, y)
ρX

|Y=y(x)=, (2.6)ρY(y)
where ρX,Y is the joint density of (X, Y) and ρY t

∫hedensityofY.TheconditionalexpectationisthendefinedE[X|Y=y]=xρX|Y=y(x)dx.(2.7)X
densityXX ρX |Y =y that takes into account that a value
X
X

| Y = y] for each y , where we
define a random variable E[X Y] on Y

(X

Y X

X

X
X

Y
Y

(X

E X| Y

(X
(X

E X| Y

P X
.

Y
Y

Y

Y

(= 1 |

99%

=1)

(= 1
(= 0

P
=1)=

]()=

= 1) = 0.99, =
0) = 0.99,

= 1 | Y = 1)P(Y
P(X = 1)

=1)=P(X=1 | Y = 0)P(Y = 0)+ (
=0.01 0.99+0.99

· 0.01 = 0.0198

=
0
=
1

=y].

= 1 |

= 1) = 0.01 =
0) = 0.01.

= 1)P(Y

(

=1) 0.99 ·0.01= =0.5.0.0198

=1)

= 1) = 0.01

P

P

P
P

P
P

P

|
|

|
|

∈ Y
|

If

with
[

since is completely determined by

|]=0(“theexpectedvalueof]. For
this, we get

is completely determined by

The above identities can be written more compactly as

, then clearly

A very important refinement of Chebyshev’s inequality are
the probability of exceeding the expectation is
Hoeffding’s Bound.

Theorem 2.11 (Hoeffdin
∑g’sInequality).X1,...,Xnin,,andletS=1nnni=1Xit

n n

, when knowing

since the expected value of a constant is just that constant, and hence E | asarandom
variable.

Using the definition of the conditional density (2.6), Fubini’s Theorem and expression (2.7), we can
writetheexpectationof as

, is zero”). We are interested in the value

Y X Y

One can interpret this as saying that we get the expected value of by integrating the expected values
conditioned on Y = y with respect to the density of . In the discrete case, the identity has the form

|

In the context of machine learning, we assume that we have a (hidden) map f :
X → Y from an input

space to an output space, and that, for a given input x
∈ X , the observed output is y = f(x) + ε, where ε

is random noise with E[ε] = 0. If we consider the input as a random variable X, then the output is random
variable

, which state that
. A prototype of such an inequality is

X

f(X)

f Y

E[εX
Y
| X

[X

E X| Y E[X| Y

[Y| X

[X

S

Y

y

Y

ε

[S

[f (Y)

E[f (X)| X
X .

f X

Y

E[X
| Y

X (x) dx

ρ(X,Y)(x, y) dy dx
Y

xρ(X,Y)(x,y)dx y

xρ(X
|Y=y)(x)dx ρY y

Y

ε,

X

E[X].

[ε| X

Y

.

E[X| Y

X

fX),

yρY

[f (y) | Y y
[XY

y.

[01]

= ()

[

] =

=

=

=

](y) =

(

] =

=] = E

= (

]]=

] + E

) +

=y]P (

d

∫()dy=

=y]=E

0

2e−2

=y).

] = (

=] (y)d

=]=f(y),

] = f(Y)

E

E

E

E

P E| −]| ≥ t)

|

≥

≤

∫ X

∫ x ρ X ∫

∫ x X (∫

∫ Y (∫ X
)

)

∑]=y

E[E[X Y

nt2

exponentially small

Let beindependentrandomvariablestakingvalues
betheaverage.Thenfor ,

Concentration of measure

concentration inequalities

Note the implication of this: if we have a sequence of random variables {Xi} bounded in [0, 1] (for
example, the result of repeated, identical experiments or observations) then as n increases, the probability
that the average of the random variables deviates from its mean decreases exponentially with n. In
particular, if the random variables all thave the same expectation µ, then (by linearity of expectation) we
have E[Xn] = µ, and the probability of straying from this value becomes very small very quickly!

Even though probability theory and statistics are central to machine learning, probabilistic concepts are
often not used rigorously. For example, one frequently encounters expressions such as P(X

| Y) which,
taken literally, do not make sense. Depending on context, such an expression may refer to either the
conditional expectation E[X | Y], the conditional probability P(X ∈ A | Y ∈ B), or the conditional
density ρX

|Y =y(x). It turns out that for most practical purposes it does not really matter, but it is just
something that a mathematics student used to rigorous definitions should be aware of.

A good general introduction to probability theory is §1.1 of [27]. Good references for concentration
of measure and related topics are [3, 30].

Notes

Part I

Statistical Learning Theory

21

3

Binary Classification

A is a function

23

The unit loss function does not distinguish between false positives and
is a pair (x, y) with h(x) = 1 but y = 0, and a false negative is a pair for which
would like to learn a classifier from a set of observations

. A false positive
but y = 1. We

where X is a space of features. The fact that we use it not very important, and in many cases
we will also consider classifiers taking values in

{−, whereconvenient.Binaryclassifiersariseina
variety of applications. In medical diagnostics, for example, a classifier could take an image of a skin
mole and determine if it is benign or if it is melanoma. Typically, can arise from a function X → [0,1]
that assigns to every input x a probability p. If p > 1/2, then x is assigned to class 1, and if p

≤ 1/2 it is
assigned to class 0.
In the context of binary classification we usually use the unit loss function

{ (x , y) } n i i i = 1⊂ X × Y . (3 . 1)

The classifier should not only match the data, but generalize in order to be able to classify unseen
data. For this, we assume that the points in (3.1) are drawn from a probability distribution onX × Y , a n d
replace each data point (xi, yi) in (3.1) with a copy (Xi, Yi) of a random variable (X, Y) on

X × Y . W e
are after a classifier h such that the expected value of the empirical risk

(3.2)

In this lecture we begin the study of statistical learning theory in the case of binary classification. We will
characterize the best possible classifier in the binary case, and relate notions of classification error to each
other.

Binary Classification

binary classifier

false negatives
h(x

L(h() , y

h

h

{h(Xi

h
(
h
(

y
y
.

) = 1

R̂ ˆ 1(h)=
n

i

(x)=y =

= 0 , 1 } ,
0 , 1
}
1 1

)=Yi

1
0

)
=
)
=

) = 0

{ 6

:X → Y

}

{

{
}

6 }

6x
x
x

∑n 1= 1

{

then

We call this the

Note that if we write

, because

is small. We can write this expectation as

While in Example 3.1 we could choose (at least in principle) h(x) =
presence of noise this is not possible. However, we could define a classifier

and get
∗ by setting

≤

. The following result shows that this is the best possible classifier.

, in the

where (1) uses the linearity of expectation, expresses the expectation of an indicator function as
probability, and (3) uses the fact that all the Xi, Yi are identically distributed. The function R(h) is the
risk: it is the probability that the classifier gets something wrong.
Example 3.1. Assume that the distribution is such that is completely determined by X, that is,
Y = f(X). Then

6

and R(h) = 0 if h = f almost everywhere. If
X is a finite or compact set with the uniform distribution,

then R(h) simply measures the proportion of the input space on which h fails to classify inputs correctly.

While for certain tasks such as image classification there may be a unique label to each input, in
general this need not be the case. In many applications, the input does not carry enough information to
completely determine the output. Consider, for example, the case where

X consists of whole genome
sequences and the task is to predict hypertension (or any other condition) from it. The genome clearly
does not carry enough information to make an accurate prediction, as other factors also play a role. To
account for this lack of information, define the regression function

E

E

P P

] = 0

)=E[] = 1·

)=E[

(

(1)1[R̂ ˆ(h)]=n
(2)1
=

i

∗()=

= 1|

() = P ((

= (

∗) = inf
h

) + 0·

(3)=P(()=
(2)
()

) +

(

) = (

)=:

i) = Yi

i) = Yi

= 0|

)

] + E [

1/2.

]

) = P(Y = 1|

() = 0

[ε| X

f(X Y| X

f(X

h

R h

Y

h x

Y

R(h

h

Y| X

X

h X

f X

P(h(X
n=1

h X Y

ε,

R(h),

R(h

∗)

{h(X

f (x) >
f(x)

[f (X)| X

Y

Y

f X)),

R(h),

X

ε|X].

f(x)
h

X).

R h

= (

1
2
1
2 ,

fX)

∑nE[1

∑i=1n

] = E︸

{10

︷︷ ︸

6

6

≤

6 }

Theorem 3.2.

Bayes classifier

The Bayes classifier

∗The Bayes classifier

where the infimum is over all measurable

satisfies

. Moreover,

Proof.
X:

Let

is called the

For (1), we decompose

E

For the inner expectation, we have

where the inequality follows since
we get

or error of

be any classifier. To compute the risk

where the last equality follows from (3.4) applied to

To see why (1) holds, recall that the random variable E
0

}|X = x], and will therefore only be non-zero if h x
out of the expectation.
Hence, using (3.3),

, we first condition on

E − ∗
h with respect to the best possible classifier.

{ }

1
}| takesvaluesE[1{h(x)=

. We can therefore pull the indicator function

∗. The characterization (3.4) also shows that

(3.5)

(3.4)

1
{ (} () ≥ { } − (3 . 6)

{ ≤ }
Combining the inequalities (3.5) and (3.6) within the bound (3.4) and collecting the terms that are
multipliedwith andthosethataremultipliedwith− ,wearriveat

and then average over

(3.3)

. By the same reasoning, for (2)

which completes the proof.

We have seen in Example 3.1 that the Bayes risk is 0 if Y is completely determined by X. At the
other extreme, if the response Y does not depend on X at all, then the Bayes risk is 1/2. This means that
for every input, the best possible classifier consists of “guessing” without any prior information, which
means that we have a 50% chance of being correct!
The error
h ()

h

f X

R

h

{ h (X 6

R(h∗

{h(X

R h

h X

R h

Y X

f X
h
∗
X

{h(X

f X

f(X

{h(X

f X) > /

f (X ,

R(h)

h X
h X

h X
h X

h X
h X

f X

f(X

R h

{h(X

{h(X

, f X) > /
, f (X /

, f X) > /
, f (X /

, f X) > /
, f (X /

iffX) /

}f (X)]

X

Y X]] .

f X
f X .

.

f X

1
{fX > /} −fX
1

{h∗X }−fX R(h∗)
h h

f X 1
{fX≤/}fX)]
f X ,

,

1{hX ,Y }|X]
X E Y 1
{ h X } | X]
Y X 1
{ h X } E Y | X]
f X 1 h X f X .

Y h X X Y

()

()
≥
=

) =

) =

=

() = E

) = 1}(1

() =

) = 0

[1(

[min

(1

) = Y

() =

) = 1}(1

12(1

)1(

))=1 (
+ 1

1 (
+ 1

f (X))

() ≥ 1/2 f(X) +
()=0 f(X)+

R(h)

}]=[

) = 0 (
() = 0

)) + 1

) = 1 (
() = 1
) = 1 (
() = 1

() (

) =

12(1
)12

) = 0

(1 ())

() 1 2 (1 ())]
()=1(1 ())]=

=

())]+()12(
1
)]2

())
()

] = E[1{h(X)=1,Y=0}+ ()=0 =1
= E[(1

−Y)1{h(X)=1}|]+ [()=0
(1)
= 1 {h(X)=1}E[(1−)|]+ ()=0 [
= 1

{h(X)=1}(1− ())+ ()=0 ()
[
{ () = 0]
() = 0

1 2 (1 f(X))
) 1 2 (1 f (X)) 1 2
(1 f (X))
) 12f(X),

1 2

E

E
E

E

E

EE[1

[1

1

[
1
[
1

[1

1
(
+
1

{
{

} |

−

{

{

−

}
}

6

{
{

≥ {
{

≥

−

} −

− } ≤

6 } |

} −
≤ } −

} −
≤ }

≤

[1
︸

︷︷(1) ︸ ︸ ︷︷(2) ︸

excess risk

Notes

Approximation and Estimation

The first compares the performance of ĥˆn against the best possible classifier within the class H, while the
second is a statement about the power of the class

H. We can reduce the estimation error by making the
class

H smaller, but then the approximation error increases. Ideally, we would like to find bounds on the
estimation error that converge to 0 as the number of samples n increases.

6

to be small. We know that the smallest possible value this risk can attain is given by R(h∗), where h∗
is the Bayes classifier. We can decompose the difference between the risk of ĥˆn and that of the Bayes
classifier as follows:

We conclude this lecture by relating notions of risk. In what follows, we assume that a class of classifiers
H is given, from which we are allowed to choose. We denote by ĥˆn the classifier obtained by minimizing
the empirical risk R̂ ˆ(h) overH, that is

where the (Xi, Yi) are i.i.d. copies of a random variable (X, Y) on X × Y. Note that ĥˆn is what we will
typically obtain by computation from samples (xi, yi). The way it is defined, it depends on n, the class of
functionsH, and the random variables (Xi, Yi), and as such is itself a random variable.
We want ĥˆn to generalize well, that is, we want

−

6 }

(ˆn) ∗)= (ˆn)

R̂ ˆ(ĥˆn)=inf
h

inf
h

(ˆn) = P(ĥˆn() = Y

i) = Yi

)

()+ inf
h

R ĥ R(h

R ĥ

R ĥ

X

R h

{h(X ,

R(h) R(h∗)

∈ H i

∈ H
︸ ∈ H︸

∑n 1= 1

−
︷︷

︸
︷︷−

︸Estimation error Approximation error

4

Finite Hypothesis Sets

The parameter h depends only on the class
bound the difference

where

wherewerecallthatR(h)=P(h(X .Asopposedto,
solely on the probability distribution. Moreover, for any fixed ,
possible classifier in
H, that is, the one that generalizes best:

Given a fixed hypothesis set H, we would like to study the classifier
(Xi, Yi) by minimizing the empirical risk over the class
H ,

computed from n

and the probability distribution. A less ambitious goal is to

random samples

R(ĥˆ) −R(h). (B)
We emphasize here that R̂ ˆ(h) and R(ĥˆ) are both random variables, and R̂ ˆ(ĥˆ) is a random variable in
two ways. Bounds on (A) and (B) are therefore probabilistic. More precisely, for any given tolerance
δ
∈ (0, 1), we want to find constants C(n, δ) and C′(n, δ) such that

R(ĥˆ)
−R(h∗)≤C(n,δ) and R(ĥˆ)−R(h)≤C′(n,δ)

holds with probability 1
− δ. Ideally, the constants should also depend on properties of the set H, for

example the size of
H if this set is finite. In addition, we would like the constants to decrease to 0 as

n
→ ∞. In this lecture we will derive bounds on (B) in the case where H is a finite set.

27

Hence,forany, isarandomvariablethatdependsonthenumberofsamplesnandonthe underlying probability
distribution. The classifier ĥˆ is also a random variable, and depends on n, the class H, and the underlying
distribution. This is the object that we can compute from observed data. If h∗ denotes the Bayes
classifier, then we would like to bound the excess risk

E(ĥˆ)=R(ĥˆ)−R(h∗), (A)

) =
6Y) R̂ ˆRisnotarandomvariable:itdepends

h E[R̂ ˆ(h)] = R(h). Denote by h a best

H

6 }R̂ ˆ(ĥˆ)=inf
h

()= inf
h

R̂ ˆ 1(h)=
n

i
i) = Yi

h R̂ ˆ(h)

R̂ ˆ(h),

R h R(h).

ĥˆ

{h(X .
∈ H

∈ H

∑n 1= 1

Risk bounds for finite sets of classifiers

and the

Hence, by Hoeffding’s inequality,

. Then

In this section we prove the following bound.

i satisfy the conditions of Hoeffding’s inequality. Set and resolve for

∈ H

As a first step towards bounding the supremum, we need to bound the difference
|R(h) − R̂ ˆ(h)| of an

individual, fixed h. The key ingredient for such a bound is a concentration of measure inequality known
as Hoeffding’s bound.
Theorem 4.2 (Hoeffding’s In
∑equality).Z1,...,Zn,Zn)it0
− 2

t, which gives

(4.1)

This important result shows that (with high probability) we can bound the estimation error by a term
that is logarithmic in the size of

H, and proportional to n−1/2, where n is the number of samples. For fixed
or moderately growing K, this error goes to zero as n goes to infinity. If we denote by h the minimizer of
R(h) overH, then we can write the estimation error as

Using Hoeffding’s Inequality we obtain the following bound on the difference between the empirical
risk and the risk of a classifier.

Lemma 4.3.

Theorem 4.1.

in , and let

Let

holds with probability at least

Proof. Set Zi = 1
{h(Xi Yi

For any classifier and

be a finite dictionary. Then for

Let beindependentrandomvariablestakingvalues
be the average. Then for
≥ ,

H

6

−

− .

}

−

−

}

−

∈

−

∈

≥ 1 −

≤

−

[01]

=

=(1

(ˆ)

1

) =

P(|R̂ ˆ(h)

(ˆ) inf
h

≤

() = R̂ ˆ(ĥˆ)

≤2suph

(0, 1),

|ˆ() R(h)

n1
n= Zi=R̂ ˆ(h),
ni=1

n] = E[R̂ ˆ(h)] = R(h),

δ = 2e−

R̂ ˆ(ĥˆ)+R̂ ˆ(h)

(0, 1),

Z

R ĥ

/n

R h

h

R ĥ

{ h 1 , . . . , h K

Z

P
| Z n

δ

R̂ h

δ

Z

[Z

R(h)| > t

.

δ

]|>t) δ

δ.

R(h)

=1
n
i

2nt2

E

P

︷

(

√(2log2KR(h)≤δn

︸︸0 ˆ︷−R̂ (h)+R(ĥˆ)−
|R(h) − R̂ ˆ(h)|.

)E[Z]|>t≤2e2ntn

√|≤log(2/δ)2n

∑

√log(2/δ)t=.2n

)=P(
| Z n − E [Z n

)


∈ H

where t

which was claimed.

Therefore, with probability at least

and therefore, by taking the complement,

δ we have

For this, we use the union bound. Indeed, for each

The goal is to bound the supremum

Since the right-hand side is an intersection of events, the
events

|R̂ ˆ(hi)−R(hi)|>t,andwecanapplytheunionbound:

). The probability of (4.2) being bounded by

i we can apply Lemma 4.3 with

of this event is the

can be expressed equivalently as

to show that

of the

(4.2)

and using (4.1) the claim follows.

One drawback of the bound in Theorem 4.1 is that it does not take into account properties of the
underlying distribution. In particular, it is the same in the case where Y is completely determined by
X as it is in the case in which Y is completely independent on X. Intuitively, in the first situation we
would hope to get better rates of convergence than in the second. We will see that using concentration
inequalities such as the Bernstein inequality, that take into account the variance of the random variables,
we can get better rates of convergence in situation in which the “variance” is not too big.

P

P

=

P(|R̂ ˆ(h)

sup
|R̂ ˆ(h)h

P(sup R̂ ˆ(h)
h
∈ H

= P(R̂ ˆ(h1)

1

2sup
|R̂ ˆ(h)h

t)=1

sup
|ˆ()h

P(|R̂ ˆ(h)

)

2 log(2

2).

2)

|

|

−

−

−

−

−

| ≤

−

| ≤

1)
| ≤

− −

≤

−

−

)| ≤

)≥ 1 −R(h)

R(h)

R(h

|R̂ ˆ(hi)

R(h)| > t/2

R(h)

R̂ h −

h

− R(hi)| t> 2

t/2)

t / 2 , . . . ,
|R̂ ˆ(hK

R(h)| .

K

≤ P(|R̂ ˆ(hi)
i=1

≤ δK· =δ.K

δ ,K

t

R(hK

K/δ),n

R(h)| > t

R(hi)|

t/

>t/

δ,

δ/K

Proof of Theorem 4.1.

complement union

K/δ
n

∈ H

∈ H

∈ H

√

(

(

) ∑

√ | ≤

)

2 log(2

Notes

5

Probably Approximately Correct

An alternative point of view to generalization bounds would be to ask, for given accuracy
confidence δ

∈ (0, 1), how many samples are needed to get an accuracy of ε with confidence

and

As before, we consider a fixed dictionary H and select one classifier ĥˆ that optimizes the empirical risk
R̂ ˆ(h).Recall:

• The empirical risk R̂ ˆ and the classifier ĥˆ depend on the data (Xi, Yi), 1
≤ i ≤ n, and are random

variables. In particular, they depend on n;

•TheriskRh ER̂ hdependsontheunderlyingdistributionon ,butnotonn.

We have seen that if
H {h1,...,hK}isfinite,thenwithprobability ,wehave√Rĥ−)infR(h)≤ (5.1)h∈H

Note that log(K) is proportional to the bit size of K: this is the amount of bits needed to represent
numbers up to K, and can be seen as a measure of complexity for the set H (the “space” necessary to
represent K elements). Bounds such as (5.1) are called generalization bounds.

Assuming h∗
∈HandY=(,wehave ,andh∗wouldbethecorrectclassifier.The

classifierĥˆisthenprobably(withprobability1
−)approximately(uptoanmisclassificationprobability

of at most ε) correct. This leads us to the notion of Probably Approximately Correct (PAC) learning.
In what follows, we denote by size(H) the complexity of representing an element of H. This is not a
precise definition, but depends on the case at hand. For example, if

H = {h1, . . . , hK} is a finite set, then
we can index this set using K numbers. On a computer, numbers up to K can be represented as binary
numbers using dlog2(K)e bits, and hence (up to a constant factor) size(H) = log(K) would be adequate
here. Similarly, we denote by size(

X) the complexity of representing an element of the input space. For
example, if

X ⊂ Rd, then we would use d as size parameter (possibly multiplied by a constant factor to
account for the size of representing a real number in floating point arithmetic on a computer). Note that
size(X) or size(H) is not the same as the cardinality of these sets!

31

≥ 1 −

X × Y

−

() = [ˆ ()]

=

(ˆ) 2 log(

()≤ ε)

) = 0

1

) + 2 log(2

n

P(R(ĥˆ)
−infRhh
∈ H

f X) R (h∗
δ

K
n

δ.

δ

/δ
.

ε > 0
δ :

Probably Approximately Correct Learning

which is polynomial in all the relevant parameters.

We conclude by commenting briefly on an improvement of the generalization bound (5.1) when incor-
porating assumptions on the distribution. While the bound (5.1) incorporates the number of samples and
thesizeof ,itdoesnottakeintoaccountpropertiesofthedistribution,forexample,theuncertainty
ε=Y f(X),wheref(X)=E[Y
|X] is the regression function. Let γ ∈ (0, 1/2] and assume that

almost surely. This condition is known as Massart’s noise condition. If γ = 1/2, then f(X) is either 1 or 0 and
we are in the deterministic case, where Y is completely determined by X. If, on the other hand,
γ

≈ 0, then we are barely placing any restrictions on f(X), and we are allowing for the case where f(X)
is close to 0, and hence where is almost independent of X.

holds whenever n ≥ p(1/ε, 1/δ, size(X), size(H)). We also say that H is efficiently PAC-learnable, if
the algorithm that produces ĥˆ from the data runs in time polynomial in 1/ε, 1/δ, size(
X) and size(H).

Remark 5.2. In our context, to say that an algorithm “runs in time p(n)” means that the number of steps,
with respect to some suitable model of computation, is bounded by p(n). Note that in this definition we
disregard specific constants in the lower bound on n, but only require that it is polynomial. In computer
science, polynomial time or space is considered efficient, while problems that require exponential time
and/or space to solve are considered inefficient. For example, sorting n numbers can be performed in
O(n log(n)) operations and is efficient, while it is not known if finding the shortest route through n cities
(the Traveling Salesman Problem) can be solved in a number of computational steps that is polynomial in
n. This is the subject of the famous P vs NP conjecture.

In the case of a finite hypothesis space
H with K elements, we have seen that H is PAC-learnable,

since
2 2

Definition 5.1. (PAC Learning 1) A hypothesis class H is called PAC-learnable if there exists a classifier
ĥˆ

∈ H depending on n random samples (Xi, Yi), i ∈ {1, . . . , n , and a polynomial function p(x, y, z, w),
such that for any ε > 0 and δ
∈(0,1),foralldistributionson ,

H
−

{ 1
∈

≥

}

−

≤

−

≤

| ≥ γ

≥ 1 − δ

}
X × Y

≥ 1 −

∗
∈ H

(ˆ)

(ˆ) inf
h

log(

1/2

(log

() + ε

) + logn

Y

h , . . . , h K
δ (0,1),

(Rĥ

(Rĥ

R(h∗)

|f (X)

K

R h

γn
δ.

h h

K
δ

Theorem 5.3. Let H =
Bayes classifier. Then for

be a finite dictionary and assume that , where is the

P

P

()(ε2

)

))

()),δ

∈ H

∗

Generalization bounds and noise

1 In some references, such as the book “Foundations of Machine Learning” by Mohri, Rostamizadeh and Talwalkar, this
version of PAC learning is called Agnostic PAC Learning.

for each

The random variables

Based on this, one gets a bound

In the PAC learning context, we see that

are centred, satisfy

. The average and expectation of these random variables is then

We outline the idea of the proof. The proof proceeds by defining the random variables

and we can bound the variance by

(5.2)

We can now apply Bernstein’s inequality to the probability that the sum (5.2) exceeds a certain value for
each individual h, and use a union bound to get a corresponding bound for the maximum that involves the
varianceσ2(ĥˆ).Usingthepropertythath∗

∈ H, one can also derive a lower bound on the excess risk in
terms of the variance, and hence combine both bounds to get the desired result.

samples are necessary to approximate the Bayes classifier up to a factor of ε with confidence 1 − δ. We
also see here that the number of samples needed increases as γ

→ 0, reflecting the fact that in the presence
of high uncertainty, more observations are needed than if we have low uncertainty. The proof of this result
relies on a concentration of measure result similar to Hoeffding’s inequality, called Bernstein’s inequality.
Theorem 5.4 (Bernstein
∑Inequality).{Z}nii=1 E[Zi]=0)withZcσ2=1i n Zi 0

− nt22(σ2+ct/3)

Zih

R ĥ

n

R̂ ˆ(

h∗

R(h

∗R(h∗)

γε

Zih

R̂

h

R

h

Zi>t

K /δ

Z h .n

Z h c

h X h X

[Ziĥ

σ 2 (h).

| | ≤

h
∈ H

−

≥

−

−

≤

}

(ˆ)

Var(

() = 1

Z i (h)

Var(Zi(h))=Var(

)

)

())

1(log () + log(1))

i) = Yi

(ˆ)])

))=:

and set
Let becentredrandomvariables(thatis,
. Then for t > ,n

i=1
()∑n1Pni=1

{ h∗ (X i 6

) ≤ e .

)=Yi
} − 1 { h (X 6

1

∑nˆ()=Zi(h),ni=1
()=E[Zi(h)].

1
∑n(Zĥn
︸ˆi()−︷Eˆ︷i=1Zi(ĥ)n
≤ 1

∑maxi()h∈Hi=1

| i()|≤2=:

≤P(()=∗i6(i

︸

Notes

6

Learning Shapes

35

So far we have considered learning with finite dictionaries of classifiers H. We now illustrate an example
where

H is not finite, and show how PAC-learnability and generalization bounds can be derived in this
setting. We then move on to the more general framework of Rademacher complexity.

Figure 6.1: The blue points are in the true rectangle, while the red points are outside of it. The smaller blue
rectangle represents the computed classifier ĥˆ, while the shaded are corresponds to the true rectangle
that generated the original labelling.

We compute a candidate ĥˆ : R2
→ {0, 1} as the indicator function of the smallest enclosing rectangle

of the point with label 1 (i.e., the blue points in Figure 6.1). It is clear that if we have lots of sampled
points, then we should get a good approximation to the “true” rectangle that generated the data, while
with few points this is not possible. How can we quantify this? Let 0 and δ

∈ (0, 1) be given, and let
Xbearandompointwithassociatedlabel .ThenP)=1)istheprobabilitymeasureof
the true rectangle, while

Assume that our data describes a rectangle: the input space X is a subset of R2, and the function
f: 0,1istheindicatorfunctionofaclosedrectangleB,sothatforanypointx,f(x)=1ifxis
in the rectangle, and 0 if not. Suppose that all we have access to is a random sample of labelled points,
(xi ,yi) , i 1, . . . ,n
} (see Figure 6.1, left panel).

X → { }

∈ {

6

Learning Rectangles

Y

R ĥ

ε >
f X

f X

=f(X) ((

(ˆ)=P(ĥˆ(X)= ())

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

is the risk of

If we denote by B̂{ x∈ 2
can be described more geometrically as

ĥˆ.Wewouldliketofindoutthenumberofsamplesthatwouldensure

smallest enclosing rectangle, then the risk

namely the probability of an input being in the true rectangle but not in the computed one.
Now let ε > 0 and δ

∈(0,1)begiven.IfP(X∈B)≤ε,thenclearlyalsoR(ĥˆ)≤ε.Assume
therefore that P(X

∈ B) > ε. Denote by Ri, i ∈ {1,2,3,4}, the smallest sub-rectangles or B with
P(X

∈ Ri) ≥ ε/4 that bound each of the four sides of B, respectively (see Figure 6.2). We could, for
example, start with the whole rectangle and move one of its sides towards the opposite side for as long as
the measure is not less than ε/4.

Figure 6.2: Four boundary regions with probability mass ε/4 each.

Denote by R◦i the rectangles with their inward-facing sides removed. Then clearly the probability
measure of the union of these sets is P(X

∈R◦)ε R◦ii≤,sincethemeasureofeachoftheiisatmost
ε/4. If the computed rectangle B̂ ˆ intersects all the Ri, then

First, note that since the rectangle defined by is always contained in the true rectangle that we would
liketodiscover,wecanonlygetfalsenegativesfromĥˆ(thatis,ifĥxthenxisinthetruerectangle,
buttheremaybepoints inthetruerectangleforwhichĥx).Hence,

ˆ =

\ ˆ) = P

(ˆ

)

ˆ

(ˆ) = P(

ˆ () = 1
ˆ
() = 0
(ˆ) = P(ĥˆ(X)
6= f(X))
= P

︸(ĥˆˆ(X)=︷1︷,f(X)=0︸)+P(ĥˆ(X)=0(=0=(ĥ(X)=0,f(X)=1).

: ĥˆ(x) = 1
} the computed

)=1)

(ˆ)

x

Rĥ

(X ∈ B B̂

R ĥ

(Rĥ

ĥ

ε

X

R◦i

δ.

∈B\B̂ ˆ),

B̂ ˆ ε.

, f X

R ĥ

P

R

P

P ≤

∈

)≥ 1 −

\ ≤

⋃

(X ⋃i
)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

then

where we used the inequality

Figure 6.3: The left graphs shows the
bound ε when given a confidence 1

− δ
derived in the example.

ε holds with probability at least

We now need to show that the probability that

−

. Setting the righ-hand side to

intersect all the rectangles is small:

, we conclude that if

risk as n increases. The right right graph shows the risk
(blue curve), and the theoretical generalization bound as

where we used the union bound. The probability that B̂ does not intersect one of the rectangles Ri, each of
which has probability mass ε/4, is equal to the probability that the n randomly sampled points that
gave rise to B̂ ˆ do not fall in Ri. For each of these points, the probability of not falling into Ri is at most
1−ε/4,sotheprobabilitythatnoneofthepointsfallsinto is ε/4).Hence,

Remark 6.1. Note that we did not make any assumptions on the probability distribution when deriving the
bound on n in the rectangle-learning example. If the distribution is absolutely continuous with respect to
the Lebesgue measure on R2, then we could have required the probability measures of the rectangles to
be exactly ε/4, but the way the proof is written it also applies to distributions that are not supported on all
of R2, such as the uniform distribution on a compact subset of R2 that may or may not cover the area of B,
or a discrete distribution supported on countably many points. The requirement P(X

∈ B) > ε still
ensures that enough probability mass is contained within the confines of B for the argument to work. We
may, however, end up looking at degenerate cases where, for example, all the probability mass is on an
edge, one of the rectangles Ri is an edge or the whole of B, etc. Note that in such cases the intuitive view
of the generalization risk as the “area” of the complement B \B̂ ˆisnolongeraccurate!Inpracticewewill
only consider distributions that are natural to the situation under consideration.

(ˆ)

(i:B̂ ˆ

P(

1

i =
∅)=P

= 0.99

=)

4log

4(1

Ri=

ˆ

(1

4e−

P(B̂ ˆ i =
∅) ,

R ĥ

R

i:B̂ ˆ

x

ε

δ .

R

ε/4) 4 ,
δ

R

average

does not

P

≤

∃ ∩

∃ ∩

− ≤ e −

n≥

1
−

∅ ≤

∩ ∅ }

−

≤

∩

Ri
x

i

n

n

nε/

(B̂ ˆ⋃{B̂ ˆi

()4δ

) ∑4≤i=1

0.25

0.20

0.15

0.10

0.05

0.00

0 200 400 600 800

Average approximation error

1000

2.5

2.0

1.5

1.0

0.5

0.0

0 200 400 600 800

Computed approximation error

Theoretical bound

1000

Notes

7

Rademacher Complexity

z
as

In the following, we write Zi = (i
labelsin = ,withpointsin
g: 0,1bysetting

and we denote the class of these functions by

i), i
∈ { 1
denoted by

39

The key to deriving generalization bounds for sets of classifiers
difference between the empirical risk and its expected value,

{ }

.1 Using this notation, we get

}, for the set of (random) pairs of samples and
.Toeveryh weassociateafunction

was to bound the maximum possible

(A)

(7.1)

We will bound this expression in terms of a of a property of the set , the Rademacher complexity. For what
follows, we say that a random variable has the Rademacher distribution if it takes the values 1 or −1 with
probability 1/2 each. When an expression potentially depends on different random quantities,
for example random variables X and Y , we write EX to denote the expectation with respect to only X.

Definition 7.1. (Rademacher Complexity) Let
G be a class of real-valued functions on Z. Let σ =

(σ1, . . . , σn) be a random vector, such that the σi are independent Rademacher random variables, and let
. The empirical Rademacher complexity of the family of functions G with respect to z is defined

For finite H, the probability that this quantity exceeds a given can be bounded using the union bound,
but this approach does not work for infinite sets. We therefore derive a different method that is based on
intrinsic complexity measures of H. The first such measure that we will encounter is the Rademacher
complexity.

∈ Z

Z
Z → {

X ×
Y }

−

−

Z

G

| g

6

H

i} − E

i)− E

G

∈ H

6 }sup
|R̂ ˆ(h)h

sup
|R̂ ˆ(h)h

R̂ ˆz(G) = E

()
| 1=suph n

i

() = 1

1() =sup n

[1supg n

i)6 =

)

i)]

i)=
∈ H

∈ H

∈ H

∈ G

∈ G

R h

X , Y

R h

g z

{h(X

, . . . , n
z = (x, y)

h(x) = y ,

g(Z

Y

t

· g(zi .

[g(Z

{h(X

.

Yi .
∣∣

∣∣∑n
∣1=1

∣∣

∣∣

∣∑ni=1

∑nσii=1]

∣
∣

∣
∣
∣

∣
∣

∣]
∣
∣

[1

Rademacher Complexity

σ

1We could, and will eventually, use any other loss function.

The

where r

the values

is the expectation:

2. This bound is known as

∈

Ournotionisaspecialcase:whenS 1)):
∈ G}, then we have

Using this notion of complexity, we can derive the following bound.

Before going into the proof, we list some examples.

Assume = h consistsofonlyonefunction.Thenforanypoint(z1,...,zn)
g(zi) = 1 h(xi) = yi form a fixed 0-1 vector . The empirical Rademacher complexity is

(7.4)

R()=EZ[nGR̂ ˆZ(G)].(7.2)

Remark 7.2. Note that the expected value in (7.1) is only over the random signs, and that the point z
is fixed. It is only in (7.2) that we replace the point by a random vector Z = (Z1,...,Zn) and take
the expectation. As the distribution of σ is discrete, we could also rewrite the empirical Rademacher
complexity as average:

}

Note also that the definition works for any set of real-valued functions g, not only those that arise from
the loss function applied to a classifier. In the literature there are various variations on the notion of
Rademacher complexity. It can be defined simply for sets: Given a set S

⊂ Rn, the Rademacher
complexity of S is defined as
n1

(S)=Eσsupσixi. (7.3)
x S ni=1

=(g(z),...,g(zng z()=
R(S).

since for each i, g(zi) and −g(zi) appear an equal number of times when averaging over all possible sign
vectors.

Example 7.5. Let
Hbethesetofallbinaryclassifiers.Itfollowsthatforany(z1,...,z) Znn ∈ ,theset

of vectors (g(z1), . . . , g(zn)) for g
∈ G runs through all binary 0-1 vectors. The empirical Rademacher

complexity of the set of functions
G is thus the same as the Rademacher complexity of the hypercube

S = [0,1]n as a set. Note that for each sign vector σ we can always pick out a fun

∑ctiongsuchthatg(zi)=1ifσi=1andg(zi)=0ifσi=,andthisfunctionmaximizesthesumiσig(zi).Fromthisobservationitisnothardtoco

Example7.6.Wewillseethatforafiniteset andn1K
} z ,wegetthebound

Example 7.4.

Theorem 7.3.

Rademacher complexity

∈

H
{ 6

{ }
}

−

R

{

−
R̂ G

H {

√ z G ≤

∈ Z

R G

∈ Z n ,

= maxg

sup
g

(0, 1)

R̂ ˆz(G

)

)]

1) = 2n

R̂ ˆ(

1
ˆ

() = 1 2
=

2 log(
)

E

δ

g(zi

[g(Z

/

h , . . . , h

r K)
,n

/δ) .n

=1√ ∑ n i

(

∑(∑)n1supσi·g(zi).nσ∈{−ng∈G1,1i=1

[∑]

−

∑)√1δ,n1log(1g(Zi)≤2Rn(G)+n2i=1

[∑]n1Eσσig(zi)=0,ni=1

∈ G

∈ G

Let be given. Then with probability at least

Massart’s Lemma.

from which we conclude that

Setting the right-hand bound to
−

and resolving for

The function Φ thus satisfies the conditions of McDiarmid’s inequality with
inequality we get
P)
≤−2n21Etn1n)e

, we conclude that with probability at least ,

Then for i
∈{1,...,n}andz=′izi,andusingthefactthatthedifferenceofsupremaisnotbiggerthan

the supremum of a difference, we get

, and from this

(7.5)

Example 7.7. The Rademacher complexity of a set S equals the Rademacher complexity of the convex hull
of S. For example, the Rademacher complexity of the hypercube [0, 1]n equals the Ra

√demachercomplexityofthesetofitsven√rtices.Sincethereare2vertices,Example7.6givesthebound2log(2)

(weusedthatr=nhere).WesawinExample7.5thattheexactvalueis1/2.

The proof of Theorem 7.3 depends on yet another concentration of measure inequality for averages of
random variables, namely McDiarmid’s inequality.
Theorem 7.8 (McDiarmid’s Inequality). Let

{ i}beasetofindependentrandomvariablesdefinedon
a space

Z,letci Rbeconstantswithi 0,andlet :Z→Rbeafunctionsuchthatforall
and ′,

′11

−

Using the union bound we can combine the two inequalities (7.5) to one inequality for the absolute
value |f(Z1, . . . , Zn) − E[f(Z1, . . . , Zn)]|, with an additional factor of 2 in front of the exponential
bound. Note that McDiarmid’s inequality contains Hoeffding’s inequality as a special case when f is the
average.
Proof of Theorem 7.3. Define the function

The last, and crucial, step is to bound the expected value on the right-hand side with the Rademacher
complexity. The idea is to introduce identical but independent copies Z′i of the random variables Zi.
DenotebyZandZ′thevectorsofrandomvariablesZandZ′ii,respectively.Wewilluserepeatedlythe

1 , . . . , n

t > 0

z 1 , . . . , z i , . . . , z n

z 1 , . . . , z n

(f (Z 1 , . . . , Z

n

(f (Z 1 , . . . , Z

n

Z , . . . , Z

δ

Z 1 , . . . , Z n)

)

>

)

<

z 1 , . . . , z i , . . . , z n

[g (Zi

z ′1,...,zi,...,zn

[f (Z 1 , . . . , Z

n

[f (Z 1 , . . . , Z

n

Z , . . . , Z

t

Z 1 , . . . , Z n

n

> t

Z
c > f
z
i

|f(z,...,zi,...,zn)−f(z,...,zi,...,zn

z ′1,...,zi,...,zn

g(zi

gz′n i

.

/δ) .n

ci.

1 .n
ci

.

g(zi

/n

1,n

δ

Φ(

Φ(

|Φ(

Φ(

(Φ(

) Φ(

)

) = sup
g

[Φ(

[Φ(

Φ(

)]

)

)]

1

)]+

)] + t)

)]t)

−
e
−

e

1sup ((
g

log (1
2

)))

= 1

1

(
∑ni=1

√

))

i
∈ {

{ } ⊂
} zi=6

6

−

≤

−

−

≤

≤

≤

)| ≤

)| ≤

− ≤

−

Then for all , the following inequality holds:

P

P

E

E

E

E
∈ G

∈ G

2t2
n

c2i=1i

2t2
n c2i=1i

∑

∑

fact that if f(Z′) only depends on the random variables in Z′, then f(Z′) = E ′Z[f(Z)], that is we can pull an
expression “into the expectation” if the terms involved are independent of the variables over which
the expectation is taken. We will also use the linearity of expectation repeatedly without explicitly saying
so. We can then set

Now we use a “sheep counting trick”2, and sum these terms over all possible sign patterns, dividing by
the total number of sign patterns, n:

where for the inequality we used the fact that the sup of an expectation is not more than the expectation
of the sup. We next use an idea known as symmetrization. The key observation is that each summand
g(Z′
i) − g(Zi) is just as likely to be positive as it is to be negative. In other words, if we replace
g(Z′

−gZi)withitsnegative,g(Zi)−Z′i)(g(i),thentheaboveexpectationdoesnotchange.More
generally,wecanpickanysignvectorσ=(σ1,...,σn)withσi ,
}, and will then have

where for the last equality we simply rewrote the average as an expectation over a vector of Rademacher
random variables. We can now bound the supremum of the differences by the difference of suprema in
order to get

Z 1 , . . . , Z n

gZi

· (g(Z′i)

σ ′i(g(Zi)

g(Zi

.

[1supg n i

[Φ(

=

=

=

)]=E

1))= 2
]))

∈ G

E

E

E

E

EZ ,Z ′

EZ ,Z ′

Z

Eσ ,Z ,Z ′

[n1∑sup σig∈Gni=1

2

∑n(g(Z′i)−(=1

[n1∑supg∈Gni=1

[(∑)] n 1 Z

[sup(E[g([Z)]−gZ∑n](i)g∈Gi=1)]n11∑nZ

[supE′′(Z[g(Zi)−g(Zi)g∈Gn∑ni=1i=1])]n11∑nZ

[supE′′[Zg(Zi)−gZn∑n]](i)g∈Gi=1i=1n1ZE′′

[Zsup(g(Zi)−g(Z∑n]i))g∈Gi=1n1E′′Z,Zsup(g(Zi)−g(Zi)),g∈Gni=1

] [∈{−111∑]n−g(Zi))=E ′Z,Z′sup(g(Zi)−g(Zi))g∈Gni=1

]∑[1∑nE′′nZ,Zsupσi(g(Z)−
σ
∈ { −

[11}ng∈Gn,i=1]i1∑n=E′σ,Z,Z′supσi(g(Zi)−g(Zi)),g∈Gni=1

][1∑]n−g(Zi))≤E′σ,Z′s

[upσig(Zi)g∈Gni=1∑1]n+Eσ,Zsup(−σig(Zi))g∈Gni=1
= 2 Rn (G).

≤

2When a shepherd wants to count her sheep, she counts the legs and divides the result by four.

We can therefore apply McDiarmid’s inequality to the random variable to conclude that

√R̂ ˆRG)Z(G)≤n()+(7.6)

with probability at least 1
− δ. One can combine (7.6) with (7.4) using the union bound to get a

generalization bound analogous to (7.4) but in terms of the empirical Rademacher complexity (with
slightly different parameters).

To conclude, note that the inequalities (7.4) and (7.6) are one-sided inequalities: they bound a
difference but not the absolute value of this difference. These can easily be adapted to give a bound on the
supremum of the absolute difference

|R̂ ˆ(h)−R(h)|.AsaconsequenceofExample7.5weseethatwhen
considering the set of all binary classifiers, we do not get a generalization bound that converges to 0 as
n usingtheRademachercomplexitybound.

The last equality shows why we averaged over all sign vectors: by symmetry, averaging over −σ is the
same as averaging over σ.

The empirical Rademacher complexity
R̂ ˆzisafunctionof(z1,...,zn),andbythesameargumentas

for the Φ function in the proof of Theorem 7.3 one can show that if z′ arises from z by changing z to z′i i,
then

ˆ 1
z′() z)

→ ∞

| R̂ G − R̂ G | ≤

R̂ G

ˆ (

log (1
2

ˆ ()Z

.n

/δ
n

Notes

8

VC Theory

As usual we operate on a pair of input-output spaces
classifiers with associated set

with

Instead of considering the set G, we can also consider the Rademacher complexity of
follows, assume that the classifiers in
Htakethevalues 1,1.

6 }

We saw that we could bound the maximum difference between the generalization risk
empirical risk R̂ ˆ(h) of a classifier using the Rademacher complexityR n :

}. Let

In binary classification, a classifier h can take at most two possible values on a fixed input. Denote by x=
(x,.,) n1..xn an-tupleofinputsandset

The proof depends on writing 1 {h(x)=y =(1 yh(x))/2,andisleftasanexercise.Thedefinition
of Rademacher complexity involved taking the expectation with respect to a distribution on the space

Z
that we do not know. We saw, however, that in some examples we could bound this expectation in a way
that does not depend on the distribution. We next develop this idea in a more principled way, deriving
generalization bounds in terms of parameters of the set of classifiers

H that do not make reference to
the underlying distribution. The theory is named after Vladimir Vapnik and Alexey Chervonenkis, who
developed it in the 1960s.

and the

for the corresponding vector of values of the classifier. For any fixed x
∈ Xn, we could get up to 2n

different values h(x) as h runs through
H. Note that his is a finite bound even if the set H is infinite! A

possible classification h(x) is called a dichotomy and one way to measure the expressiveness or richness
of a set of classifiersH would be to count the possible dichotomies.

45

be a set of

(8.1)

itself. For what

∈ X

G {

−

:Z → { ,

6

H

}

Z

≤ 2Rn(G

{ −

G

−

∈ { − ,

X × Y

}

R n (G

Y

∈ H } .

{ − ,

Rn (H).

H

H

=

sup(
h

x):=((

0 1} :

R̂ ˆ(h))

() = 1

=

n))

) +

() =

1 1}

) =

(h)

log (1/δ)
.2n

= 1 1

g

n

h(

R(h)

hx1

g z

) , . . . , h (x

{hx y , h

R(h)

n

∈ H

√

Lemma 8.1. The Rademacher complexities of and satisfy 1
2

Vapnik-ChervonenkisTheory

−

Lemma 8.4.

Example 8.2.

Theorem 8.5.

Corollary 8.6.

where 1
)and

Let

Consider a fixed tuple

and let

is a vector of i.i.d. Rademacher random variables (P
n).

be the set of indicator functions of closed half-lines: for each

The vectors (h(x1), . . . , h(xn)) all have norm , and the claim follows from Massart’s Lemma.

Combining this with (8.1) we immediately arrive at the following bound.

Note that this function depends only on the set . We can use it to bound the Rademacher complexity
of a set of functions

G. The bound depends on a result known as Massart’s Lemma, which is derived in
the Exercises. Recall that the Rademacher complexity of a set S
⊂ Rn is defined as

(8.2)

Given two distinct samples, {x,x,thereare4possibledichotomies:foreachpattern∈{−11}212ρ,we
can find h

∈ H such that the tuple (h(x1), h(x2)) = ρ. For three distinct points {x1, x2, x3} ⊂ R this is
no longer possible. If we assume, for example, that x1 < x2 < x3, then any classifier h with h(x1) =

− 1
and h(x2) = 1 will automatically also satisfy h(x3) = 1.

Clearly,if
H consists of only one element, then for every x ∈ X n there is only one possible dichotomy,

while if
H consists of all classifiers then there are 2n possible dichotomies if the entries of x are distinct.

Somewhere in between these two extreme cases, the number of dichotomies may depend on x in more
intricate ways.
Definition 8.3. Let
Hbeasetofclassifiersh .ThegrowthfunctionΠHisdefinedas

X

h
∈ H ,

≤

H

R

−

}

H

R n H) ≤

n H | {
√

X → Y

| { h (x x
∈ X n

H

h
∈ H } |

h
∈ H } |

∈

σ = (
1) = 1/2

r = maxx

=

+a (x) =

(

1
1

(

x = (1

Π (

R̂ ˆ(h)+

1S)= n

n)

)=

:

Π
H(n) = max

) :

−a(x)=

2 log(ΠH(n)) +n

2log(Π (n))
n

1
−1

log (1
2

(i=+1)= (=

R

P

R,

h

R(h)

σ , . . . , σ n)
x = (x 1 , . . . , x

x , . . . , x

x 1 , . . . , x

r
· S)≤

n 2
i=1 xi

x
≥ a ,

x < a

h(

n

h

/δ)
n

K

x
≤ a .

x > a

σ

a

σi

{

S = {

√ R (∑

√

.

[∑]nEσsupσixi,x∈Si=1

√}⊂RnK2log(K),n

.

√isboundedbyH.

such that

x):.

{

√

where

Proof.

For all

(Massart’s Lemma) If

∈ S ‖ x ‖ a n d ‖ x ‖ : =

The Rademacher complexity of

consists of elements, then

Let be a set of classifiers and a set of inputs. Then is by ,if

H

If VC(
H)=d,thenthereexistsasetof samplesthatcanbeshatteredbyH:allpossibledichotomies

occur when applying classifiers in
Htothese samples.Notethatthisdoesnotmean,however,thatall

sets of n samples can be shattered by
H .
We will see that if
HhasVCdimension ,thenwecanboundwhich allows to rephrase the bound (8.2) in terms of the VC dimension. We will then study plenty of
examples (including practical ones) where we can compute or bound the VC dimension.

that is, if all dichotomies are possible.

Example 8.7. If
H is the set of all binary classifiers and all the samples in S are distinct, then S is

shattered by
H .
Example 8.8. If

H = {h1, h2} consists of only two classifiers, one of which is constant 1 and the other
is constant 0, then a subset S

⊂ X of samples is shattered by H if and only if |S| = 1, that is, we only
look at one sample.

There exists a subset S =
{x}nii=1thatcanbeshatteredbyHifandonlyif
If the number of samples n increases, it can become harder to find a subset that can be shattered. While in
the case where

HconsistsofallbinaryclassifierswealwayshaveΠ nH(n)=2,inthecasewhereH
consists of indicator functions of half-lines we saw that three distinct points on the line cannot be
shattered.
The maximum possible n such that a subset of n points can be shattered is the VC dimension.
Definition 8.9. The Vapnik-Chernovenkis (VC) dimension of a set of classifiers
His

H

H

= {
| { (

⊂ X

H

n
≤

{ ∈

⊂ X

h
∈ H } |

}

HS x

h

n

d
n

.

e
d
n

,

,

.

S

VC() = max

) :

Π(n=nH) 2

VC()=d

log (Π
H()) dlog

=2n

:Π (n)=2n

n
i} i =1 shattered

x

N

()

Notes

9

The VC Inequality

where the

The VC dimension of a hypothesis set
is shattered by
H :

Given a subset S
⊂ X , we say that
obtained by intersecting S with elements of

as the maximal number of subsets of a set of
cardinality of the set system
Ais
n

The VC dimension is a combinatorial quantity that depends only on
when dealing with infinite sets.

, if every subset of

H }
counts the number of possible dichotomies,

that can be selected using

is the maximal cardinality of a subset of the input space

The notion of VC dimension was defined for classes of functions H. Equivalently, we can identify each
withtheindicatorfunctionofasetA andconsiderthesetofsets

. The VC dimension

. It acts as a surrogate for cardinality

(including the empty set) can be

In other words, we can use the collection to select any subset of . It should be clear that if S is shattered
by
A, then so is any subset of . In this context, the growth function is defined analogously,

A A }
Note that the VC dimension is monotone in the sense that it does not decrease when

A is enlarged. One of
the most important results in VC theory is a bound on Π

A(n) in terms of the VC dimension. This result is
usually attributed to Sauer (who credits Perles) and Shelah, but was discovered independently by Vapnik
& Chervonenkis.

49

that

{

H

H

{ | {

| {

⊂ X

A = { A⊂ X :

A shatters
A :
∩ S : A∈ A }

A
P

{ ∈

{ n∈

∈ A } | :

⇔ x ∈

S
⊂ X |

′
⊂ }

h
∈ H } | .

H

A

X

growth function

VC(

ΠA(n) = max

) = max

VC() = max

Π
H(n)
Π
H(n)=max((xn

= (

() = 1

S):= { :

n)):

:Π (n)=2n

:Π (n)=2n

=

A

S

A
∩

hx1

h x

S

S : A

n

) , . . . , h (x

S ′ S

, S|

A} .
S

.

,

S

.

S
n} ,

h

N

N

∈ X

VC dimension of families of sets

Lemma 9.1. If , then forVC(

=

) = d

(

(

=
=

) :

) :

1 +

ΠA(n)

=

Π

=Ã˜

(

(

=

)1+

+
+

Ã˜=

| { A∩

| { A

{

A

A

| { A

∩

| { A

∩

6

∩

∩

∈ A } |

⊂ X
∈

{ \ { } :

S\ { s }

|
{
|
{

S\ { s }

∈ A } | ≤

≥

∈ A } , A

∩ \ { }
∩ (\ {
}

∩ S \ { s }

∈ A ′ } | ≤

{

∈ A } → { ∩ : ∈ A ′ }
∩ S → 7 ∩ \ { }

∈ A ′ ′
Ã
∩ S

∈ A ′ } |
∈ A } |

∈ A :

{

∩ S \ { }

s
∈ 6

∩ S \ { s } :

s
∈ 6

∈ A } ,

∪ { s } ∈ A } .

∈ A ′ ′ } |
\ { }) : A ∈ A ′ ′ } | .

A
∪ { s } ∈ A

A

S : A

S : A

S : A
A

A
A

n

n > 0
S
s S

A s A

A

A

A S A
A S s
.

A

S s : A
S s) : A

A

n

s .

(en)dd

n + d

A

.

A

A,A

A

A

′ ′ ′

A ′

A
∈ A ′ ′ } | ≤ Π A ′ ′

∑ d [(n − i i = 1

d,

∑ d () ≤ n ≤ i i = 0

n

| { A∩ S : A
′
|{A∩(S s

∑ d () − 1) ≤ n − 1 , i i

∑=0d−1()−1)≤n−1n,ii=0

()] − 1 ∑ d () n n = . i − 1 i i = 0

Note that

It follows that

By the induction hypothesis,

so that combining the terms we get

This map is one-to-one, except in the case
where hold, and therefore A
∩S=˜ ,but

. For such , both and

VC(A′) ≤ VC(A) ≤ d, and VC(A′′) ≤ VC(A) − 1 = d − 1.
The first inequality follows from the fact that if

A′ shatters a set T , then so does A. The second inequality
follows from the fact that if a set T is shattered by
A′′, then the set T ∪ {s} is shattered by A.
Consider the map

Proof. The proof of the first inequality is by induction on . If d = 0 and n = 0, then Π A(0) = 1
(only the empty set can be considered) and the bound is valid. The statement is also easily verified for
n=1andd ≤1.Assumenowthat andd>0,andthatthestatementholdsforthepairs(d,n−1)
and (d

−1,n−1).Let beasubsetwith|S|=,suchthat|{A∩S:A∈A}|=ΠA(n),and
selectanarbitraryelement .Considerthesets

where we used the inequality

In Corollary 8.6, Lecture 8, we saw that

Let H be the set of functions that take the value
The question is:

For the second claimed inequality, we extend the sum to
obtain

on rectangles in the plane and

and multiply each summand by (

− ≤ h
∈ H

Note that the only difference is the factor of /δ, which is a consequence of combining two one-sided
inequalities to one two-sided inequality using the union bound.

i,to

A central result in statistical learning is an inequality that relates the VC dimension of a set of classifiers to
the difference between the empirical and the generalization risk.

The claim now follows directly from Lemma 9.1.

We remark that the bounds here were all stated as one-sided bounds: that is, they are stated as bounds
on the difference R(h) −R̂ ˆ(h)andnottheabsolutevalueofthedifference.Wecangettwo-sidedbounds
by making adjustments in the derivation of bounds using the Rademacher complexity (using the second
case of McDiarmid’s inequality) and arrive at the following bound, which holds with probability at least
1
− δ :
e

1 otherwise1.

R(h)

R(h)

R(h)

en
) d ,

/δ)
n

/δ) .n

/δ) .n

n/d)

VC() = d

sup
h

sup

sup
h

(0, 1)

R̂ ˆ(h)

R̂ ˆ(h)

R̂ ˆ(h)

2

1

(logn

(logn

2 log (ΠH(n)) +n

log (1
2

log (2
2

log (1
2

=

1,1}

)end

)nd

d

d

∈ H

∈ H

−

∣
∣
∣

√ 2 d ≤

√ ≤

∣∣ √
∣ 2 d

n

∑ d () n ∑ n () d − i ≤ n (n) i

() i d i = 0 i = 0 n ∑ n () () d n d i =

(dn)(ini=0)ddn(=1+≤dn

1 + x
≤ ex at the end.

h :
1

√ δ , +

√

√ +

2

H ∈

−

−

X → { −
−

X −

The VC Inequality

Rectangle learning revisited

Theorem 9.2.

Proof.

(
, and let

)Let H be a set of classifiers
. Then with probability at least

with VC dimensionVC Inequality
δ

R

1 Depending on context, we will consider
the results involving the VC dimension.

as consisting of functions into or into , this does not alter any ofH {− ,{0, 1} 1 1}

+1
-1

+1

+1

Figure 9.1: A dichotomy that is not captured by rectangles.

Given n, can we find a configuration of n points in the plane such that for any labelling we can find a
rectangle containing those points labelled with 1?

This is clearly possible when n = 2 (just choose two distinct points) and n = 3 (choose three points
that form a triangle such as 4). For n = 4 there are 16 possible labellings, and if we arrange the points in
diamond form

 , then all labellings can be captured by rectangles (try this!). For n = 5 this is no longer
possible: take the smallest enclosing rectangle of five points

{x 5i}i=1.Thisrectanglewillcontain(atleast)
one of the xi on each boundary (if not, we could make it smaller). If each xi, i

∈{1,...,4},liesona
different boundary, we can assign 1 to these points and

−1 to x5. This dichotomy cannot be realized by a
rectangle: any rectangle containing

{x 4i}i=1mustalsocontaintheirsmallestenclosingrectangle,hence
also x5.

+1

Notes

10

General Loss Functions

and the

So far we looked at the problem of binary classification. We considered a set H of classifiers h:
where

Y was a set with two elements ({−1, 1} or {0, 1}, for example). Given a distribution on
we considered the generalization risk,

The term within the sup to be bounded is just the difference between the average of i.i.d. random variables
and their expectation. To bound this difference we used:

• Hoeffding’s or Bernstein’s inequality and the union bound for finite
H, to obtain a bound in terms

of log(
| H |) ;

• McDiarmid’s inequality applied directly to the supremum and symmetrization to obtain a bound in
terms of the Rademacher complexity.
The Rademacher complexity could then be bounded, via Massart’s inequality, in terms of the growth
function of H, which in turn could be bounded again, via the Sauer-Shelah Lemma, in terms of the VC
dimension of

H. It is natural to ask how much of this depends on the fact that we used binary classification
and the unit loss 1

{h(X) = Y }, and to what extent these bounds generalize to other types of classifiers
and loss functions.

53

(10.2)

(10.1)

whichisbasedonasequenceofrandomobservations i i, 1 }. For each set of realizations
{(xi, yi)} one can (in principle) construct a classifier ∈ H that minimizes the empirical risk (10.2). We
areultimatelyinterestedinthegeneralizationrisk andnottheempiricalriskR̂ ˆ(ĥˆ)(thiswouldjust
tell us something about how well our classifier works on the training data). Specifically, we are interested
in how close the risk R(ĥˆ) is to the optimal generalization risk R(ĥˆ) = infh

∈H R(h). To analyse this, we
split the difference into two parts:

,
,

6

− ≤

≤

6

6 i}

∈ {

−

6

X →
Y
X ×
Y

R ĥ

R h

R(h)

{h(X

∑n1{h(Xi=1
(X,Y

ĥˆ
R(ĥˆ)

Y

i

h X

,

, . . . , n

Y),

R(h)(ˆ) inf
h

() = E

R̂ ˆ 1(h)=
n

i

) = Y

) =

)

}]=P((

R(ĥˆ)−R̂ ˆ(ĥˆ)+R̂ ˆ(h)
2sup R̂ ˆ(h)
−R(h).h

) =

inf
h

empirical risk,

[1

∣
∣
∣

∣
∣
∣

∈ H

∈ H

∈ H

General Loss Functions

and the

while the is

Consider the set of functions

This plays the role of the set
define the

as

defined in Lecture 6. For
as

whichholdswithprobabilityatleast .Forfinitesetsofclassifiers same
cardinality bounds as in the binary case.

, with zi

Just as in the binary case with unit loss, we denote by h a classifier with optimal generalization risk in
andbyĥˆaminimizerofR̂ ˆ(h).Alsoasinthebinarycase,wecanbound

i), we can

} we get the

Assuming that L(x, y)
∈ [0, 1] (which we can by scaling the loss function accordingly) one can use the

McDiarmid’s bounded difference inequality and the same symmetrisation argument as in the binary case
to derive the bound
)

Consider a set of function H = {h: X → Y} with Y = [−1, 1] (or any other subset of R), and a loss
function L:

Y × Y → R≥0. Besides the unit-loss that we studied so far, examples include:
• L(x,y)=(x
− y)2 (quadratic loss);
• L (x ,y)=
|x − y| (`1-loss);
• L (x ,y)=
|x − y|p (`p-loss);
• L(x, y) = log(1 + e−xy) (log-loss).

Sometimes the loss function is scaled to ensure that it is in a certain range. For example, for the quadratic
loss, (h(x)−y)2/2∈[0,1]ifh(x)[and .Thegeneralizationriskisdefinedas

,

L
◦ H

G

R

−

◦ H

∈ −

−

−

◦ H

:Z →

H

R̂ ˆz(

(ˆ)

:= {

sup R̂ ˆ(h)
h
∈ H

1

(

) = E

11]

()=E

R̂ ˆ 1(h)=
n

i

∈ [−1 1]

(())] ,

= (

L

R ĥ

g

L

,

Rh

R(h)

δ

R(h)

y ,

[L h X , Y

{ h 1 , . . . , h K

x i , y

n

empirical risk

Rademacher complexity

empirical Rademacher complexity

∣
∣
∣

∣
∣
∣

∑nL(h(Xi),Yi).=1

∣ ≤∣
∣∣2sup−∣R̂ ˆ(h)R(h)∣.h∈H

[0, 1]: g(z) = L(h(x), y)
} .

z = (z 1 , . . . , z n)

[∑]n1σ sup σig(zi),g∈L◦Hni=1

[])=ER̂ ˆZZ(L◦H.

√≤2R(◦Hlog(2/δnL)+,2n

H =

Theorem 10.1. LetH
function taking values in

be a set of classifiers , and let be a loss

R

}

∈ }

)
∈

◦ H) ≤ r

◦ H) ≤

{(1)
√

≤

: X → [− ,

◦ H } .=sup

()=

={ 1
[01]

R̂ ˆz(

(

S =

[0, 1] r

2 log(

2 log(

n)):

11]

r

g z

h , . . . , h K
, .Then

L

{‖x‖ :x S ,

L(h(x), y

L

h

K).n

g z , . . . , g (z

n

K)
,

n

g L

L

n
√

√ ·

where

Proof. Fix z = (z1,...,zn). Then by Massart’s Lemma (Lemma 8.4 in Lecture 8), the empirical Rademacher
complexity is bounded by

∈

Sincebyassumption ,andtheresultfollowsbytakingtheexpectation
over Z.
For infinite

H we cannot repeat the arguments used in the case of binary classifiers with unit loss.
The bounds based on growth function and VC dimension depend on the fact that the number of possible
dichotomies is finite and this is no longer the case when considering functions h with infinite range. One
way of dealing with such a situation is to approximate an infinite set by a finite set in such a way, that
every element of the infinite set is close to a point in the finite subset.

Notes

11

Covering Numbers

This set plays the role of the set
define the

In this lecture we consider hypothesis
set [0, 1]. Define the set of functions

where the expectation is over all sign vector
+1
} = P{σi = 1 = 1/2. The

whichholdswithprobabilityatleast .Forfinite of binary
classification carry over seamlessly.

57

defined in Lecture 6. For
as

) with independent
is defined as as

), with zi

and a loss function

that satisfy

i), we can

wheretheexpectationisoveralln-tuplesZ 1 n),whereZi=(Xi,Yi).Asinthecase of binary classification with unit
loss, one can use McDiarmid’s bounded difference inequality and a
symmetrisation argument to derive the bound

}, the arguments used in the case

Proof. Fix z = (z1,...,zn). Then by Massart’s Lemma (Lemma 8.4 in Lecture 8), the empirical Rademacher
complexity is bounded by

− }

◦ H

G

R

}

R

−

−

◦ H

H

◦ H

{

:Z →

◦ H) ≤ r

◦ H) ≤

:X → Y

≤ 2 R n L◦ H

H { 1

X → [− ,

{

:Y × Y →

H = {
[0, 1]

R̂ ˆz(

:= {

sup R̂ ˆ(h)
h
∈ H

1

(

R̂ ˆz(

(

) = E

=

σ = (

)=EZ

=(

[0, 1] :

(

=

1sup

:

2 log(

2 log(

= [−1, 1]}

log (2
2

11]

= (

=

L

L

h 1 , . . . , h K

L

g

L

L

R(h)

δ

h

[g ∈ L ◦ H n

σ 1 , . . . , σ

[R̂ ˆZ(L

Z , . . . , Z

h

K)
.n

K)
,

n

,

L h x , y) } .
z 1 , . . . , z n

/δ) ,n

σi

L

L

x i , y

σi

n

n

Theorem 11.1. Let
taking values in . Then

empirical Rademacher complexity

Rademacher complexity

be a set of functions , and let be a loss function

σ

P

∣
∣
∣

∣
∣
∣

√

√ ·

g(z)= (()

z = (

∑]nσig(zi)i=1

n

]◦ H) ,

√)+

h , . . . , h K

where

and we get from (11.1) that

The volume of a ball of radius

if ε < 1. Of course, if ε≥ 1 then we have an -net of size .
WenextconsiderthesetL withtheempirical1distance

We get the following bound for the empirical Rademacher complexity at .

(11.1)

∈

Sincebyassumption) , andtheresultfollowsbytakingtheexpectation
over Z.
For infinite

H, we cannot repeat the arguments that lead to the VC inequality in the binary classification
case, since these arguments were based on the fact that even for infinite

H, the number of possible
dichotomies is finite. This limitation can be circumvented by approximating L

◦ H by a finite subset that
is sufficiently dense. This leads to the concept of covering numbers.

Recall that a metric on a set S is a function d: S × S → R≥0 such that d(x,y) = 0 if and only if
x = y, d(x, y) = d(y, x), and d(x, y) + d(y, z)

≤ d(x, z). A pseudo-metric is defined like a metric, but
replacing the first condition with the looser requirement that d(x, x) = 0 (that is, d(x, y) = 0 may also be
possible if x = y).
Definition 11.2. Given a pseudo-metric space (S, d), an ε-net is a subset T

⊂ S such that for every
x

∈ S there exists y ∈ T with d(x, y) ≤ ε. The covering number corresponding to S and ε is the smallest
cardinality of an ε-net:
N (S, d, ε) = inf{|T|: T is an ε-net}.
Example 11.3. Consider the Euclidean unit ball Bd = Bd2 =

{x ∈ Rd : ‖x‖2 ≤ 1}. We construct an ε-net
T as follows. Start with an arbitrary point T =

{x1} and add points to T as follows: if T = {x1, . . . , xk},
then choose a point xk+1 such that

‖xk+1 − xj‖ > ε for all j if possible, and add it to T , and if this is not
possible, then stop. This process terminates since Bd2 is bounded. The resulting set T =

{ x 1 , . . . , x N }
is an ε-net by construction, and the distance between any two points in this set it larger than ε. Hence,
the balls Bd(xj, ε/2) of radius ε/2 around the points in T are disjoint. Since the union of these balls is
contained in the larger ball (1 + ε/2)Bd (the scaling of the unit ball by a factor of (1 + ε/2)), we get the
volume inequality

N

Bd(x1,ε/

r

g z

N

Bd(x1,ε/

risr

ε/

g1, g2

x : x S ,

L (h (x)

, y

B

B

ε/
ε/

ε

`

|g1 (zi

Bd(xi ,ε/

g z 1) , . . . , g (z n
n

g L

ε/

ε/2)B d .

B ,vol(

vol(

=sup

()=

2)) = (

dz1(

d · vol(
2)d vol(

2)) = vol

(1+ 2)d =(2)d

S = ((

[0, 1] r

2+ 1ε
1

vol((1 +

)):

(1+

d)=(1+ 2)d vol()

6

{ ‖ ‖

◦ H

≤

∈ }

∈

{
√

≤
◦ H } .

z

d

Covering Numbers

(⋃ i
d

), hence
d

)and

(

n

1
∑)=ni=1

) (2)≤vol

ε/2)B

) d () d ≤ 3 ε

)
− g2(zi)|.

)

Theorem 11.5.

where

If

Theorem 11.4. Let
takingvaluesin ,

)and

, then

with zi

be a hypothesis set of functions taking values in
[.Thenforanyz nwehave

, and let be a loss function

g
∈

R̂ ˆz(

◦ H

◦ H

≤

≤

≤

≤

:Y × Y →

∈ Z

◦H)≤infε>0

{

∈

{

∈

|〈

:X → Y :

‖ ‖

1

‖ ‖

∞

〉 | ≤ ‖ a ‖ ∞

X

〈

◦ H) ≤ R̂ x H

i i .

◦ H , d 1

‖ x ‖ 1 ≤ 1 .

∈

R̂ z H)
p

i| ≤ } ,

| | ≤ } .

}

x = (

H
[01]

) = E

R̂ ˆz(

=

z = (

d1 =

∞ =

[0, 1]

sup dz1(
g
∈ L ◦ H

2 log(
ε +

1sup
∈ ◦ H n

1
sup
∈ ◦ H n

1
sup

i

()| =

:

:

() =

2 log(

′ i)− g (zi)|
n

1max
g′

∈T i=1

dz
1))

2 ˆ

(=

(

∑d= |i=1
=max

i

=

) +

)

)
ˆ

(

1

1

))

−1, 1]

L

L

L

B

x 1 , . . . , x n

L

B

B

d

x

x

{ h

h

|hx

R̂ ˆz(L

z1,...,zn)

a , x

|g(zn=1

g, g′) + Eσ

N(L
◦ H ,

n

ε > 0
∈ T
n

σi g (zi)

σi g (zi

x

x

h x

n

, ε
,

,

x , y

N(L
n

x

xi

Bd
1

a , x
〉,a

B

, ε

.

.

L

σ ′ig(zi

d

d

z

z
∈ Z n

[σ

[gLσ

[gLσgL

√

{ ε

g′

∑

∑i=1n

∑i=1n

√ +

]

)
−

[

z′ 1)≤ ε

]σg′i(

]ziEσ+Eσ

∑σg′i (zi

ε >

}

ε(L

[1 ∑ n σ g ′

[i(zini=11∑n

]supg∈L◦Hni=1)

, z 1

])

])

Notice that the set

H

By the Hölder inequality, the functions satisfy

is a hypercube. We now consider

In light of this result, we conclude this section with a bound on
In what follows we denote by Bd

⊂Rdptheunitballwithrespecttothe

and the class of functions

The covering number takes over the role of VC dimension. Note that the covering number increases
as ε decreases, and we get a trade-off between small ε and small covering number.

ProofofTheorem11.4.Fix and ,andletTbeasmallest-netfor
◦ H d). It follows

thatforany wecanfinda suchthatd(g,g .Hence,

where we used the bound for finite sets, Theorem 11.1. Since 0 was arbitrary, this bounds holds for the
infimum among ε > 0.

The bound derived is for the set L
◦ H. Under a boundedness condition on the loss function, we can

bound the Rademacher complexity of this set in terms of that of
H .

for a specific class of functions.
-norm. In particular,

∞

∈ ◦ H

∞

E

E

R

d

R

d

If

Two functions

We thus get the bound

From the Hölder inequality we get
we have
‖xi 1 1and

is sufficiently large, then setting ε

Note that the resulting bound does not depend
on using a more sophisticated technique called

are thus represented by two vectors

, we get the bound

1, and since by assumption each

. It is possible to remove the logarithmic factor

.

d, and for their distance we have

1

An ε-net therefore corresponds to a set T
{ d ad1N suchthatforevery∈B∞thereexists

ajsuchthat a bj
‖∞ ≤ ε. It follows from Exercise 4.1 that the covering number is bounded by

,

n

h , g

h , g n
i

a

b,x i

xi B
‖ ≤

‖ −

∈ H

|〈 −

|〈 a − 〉 | .

∈
d

dx1(1) =

R̂ ˆx(H)≤inf +ε>0

=3 dlog()

ˆ
x()4

log (n)

1

a , b
∈ R

∑n ∑n| 1h(xi)−g(xi)|=n=1 i=1

b , x
〉 | ≤ ‖ a − b ‖ ∞ ‖ x ‖
dx(h, g)
≤ ‖ a − b ‖ ∞ .
= b , . . . , b
}⊂ B ∞

()x3dN(H,d1,ε)≤.ε

{√ }2dlog(3/ε)ε .

√nn

√/n<1R̂ H≤dlog(n).n

x
chaining

Notes

12

Model Selection

Given an input space
R
≥0, and data S
problem

of the excess risk. Denote by the minimizer of

61

in

, an output space Y, a class H of functions
x ni,yi)

}i=1, we would like to solve the

, a loss function

. In previous lectures we saw that

(12.2)

∑ni)i)ni=1 (A)
subject to
∈ H .
This is an example of a constrained optimization problem. The function to be minimized is the
objective function and a solution ĥˆS of (A) is called a minimizer. Several problems can arise when
trying to solve this minimization problem.

1. The problem (A) may be hard to solve. This can be the case if the class
H is large, the number of

samples n is large, or when the objective function is not differentiable or not even continuous.

2. Do we even want to solve (A)? If the class
H is large we may find a minimizer ĥˆS that fits the data

well but does not generalize.

Since a certain generalization error is unavoidable, we can often replace (A) with a surrogate that is
computationally easier to handle and provides a solution that is close enough to the one we are looking
for. The choice of such an approximation is also informed by the choice of

H. We therefore first study the
problem of finding a suitable class

H, also known as model section.

(ERM)

Consider now the set of inputs again as a set of pairs of random variables S ={ (X , Y) } n i i i = 1⊂ X × Y ,
sothatĥˆSisarandomvariable.IdeallywewouldlikethegeneralizationriskR(ĥˆS)tobeclosetothe
Bayes risk R∗, which is the best possible generalization risk. Recall the decomposition
R(ĥˆ)
−R∗=R(ĥˆ)−infR(h)+infR(h)−R∗SS(12.1)hh

X
{

− ≤

H

R(h)
−

:X → Y :Y × Y →

h

RĥS R(h)

R̂

h

h

R h

L(h(x , y

= (

(ˆ)

()

2

s

u

p
h

1minimize ˆ() =

R̂ ˆ(h)

∈ H

∈ H

︸ ∈ H

h L
E m p i r i c a l R i s k M i n

︸ ︷︷

∣
∣
∣

︸ ︷︷

∣∣

∣ ,

Model Selection

Estimation error ︸Approximationerror

that

Considertheunitlossfunction,sothat P {
function fT is the Bayes classifier, as it satisfies
combine (12.1) and the bound (12.2) to get

for some function h: R2
∗ .Foranyhypothesisset

, .The
we can

Let Hk denote the set of indicator functions of regions bounded bys convex polygons with at most k sides
(see Figure 25.1). To bound the estimation error, we use the fact that the VC dimension of the class of
convex k-gons is 2k + 1 (see Problem Set 4), and get the bound

(12.3)

with probability 1 − δ (we simplified the logarithmic term in the first part of the bound). For the
approximation error, we look at the well-known problem of approximating the circle with a regular
polygon. The area enclosed by a regular k-gon inscribed in a circle of radius r is r2(k/2) sin(2π/k), so
the area of the complement in the disk is

πr2
−r2(k/2)sin(2π/k)=O(k−2), (12.4)

where the equality follows from the Taylor expansion of the sine function. If the underlying probability
distribution on R2 is the uniform distribution on a larger set or can be approximated as such, then (12.4)
gives an upper bound for the approximation error (it can be less), and combined with (12.3) illustrates
the estimation-approximation trade-off. The larger the number of sides of the polygons, the smaller the
approximation error becomes, but the estimation error can become large due to overfitting. Thus even if
the unknown shape we want to learn is a circle, if the number of samples is small we may be better off
restricting to simpler models! This also has the additional advantage of saving computational cost.

There are general strategies for optimizing for k. One theoretical method is known as structural risk
minimization (SRM). In this model, the parameter k enters into the optimization problem to be solved.
An alternative, practical approach is cross-validation. In this approach, the training set S is subdivided
into a smaller training set and a validation set. In a nutshell, the ERM problem is solved for different
parameters k on the training set, and the one that performs best on the validation set is chosen.

and therefore any bound that holds for the right-hand side with high probability (such as those based on
VC dimension or covering numbers) also holds for the left-hand side. If

H is large, then the bound may
not be good enough, and in addition the minimizer ĥˆS may be hard to compute. If, on the other hand,

His
too small, then the approximation error can be large. One way to address this issue is to consider a nested
family of sets Hk ⊂ Hk+1 of increasing complexity and to choose a k with optimal overall performance.
We illustrate this using an example.

Example 12.1. Let T
⊂ R2 be a disk and let (X, Y) be a pair of random variables on R2 0, 1} such

≤

− | ≤

× {

→ { }
H

sup
| hk

(ˆS) 2sup
h

R̂ ˆ(h)+ inf
h

(4k + 2) log(n) +n

1 x
∈T(x)=E[Y
|X=x]= 0 x
∈ 6
R(h)= h(X)=Y
}

R(fT) = R = 0

log (2
2

0 1

R ĥ

R̂ ˆ(h)

f

R(h)

R(h)

T
T

.

/δ)
n

∣
∣
∣ ︷︷ −

√

{

6

∣∣

︸∣ ︷ R︷ (h︸)

√

∈ H

︸ ∈HBoundonstimationerror︸∈HApproximationerror

4

3

2

1

0

4

3

2

1

0

0

0

1

1

2

2

3

3

4

4

4

3

2

1

0

4

3

2

1

0

0

0

1

1

2

2

3

3

4

4

Figure 12.1: Learning a circle with polygons. The left panel shows the estimation error when trying to learn
the shape using polygons with at most 4 and with at most 8 sides from the data. This is the error typically
incurred by empirical risk minimization. The right panel illustrates the approximation error. This error
measures how good we can approximate the ground truth with our function class.

Part II

Optimization

65

13

Optimization

“[N]othing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”
— Leonhard Euler

67

subject to

where f : Rd
→ R is a real-valued
If Ω = Rd, then the problem is an
one with smallest f-value. Typically, the constraint set
equations and inequalities,

In what follows we will study the unconstrained problem

A general mathematical optimization problem is a problem of the form

1≤ ≤ 1
A vector x∗ satisfying the constraints is called an optimum, a solution, or a
problem (13.1), if f(x∗) ≤f()forallother thatsatisfytheconstraints.Notethatreplacingf
we could equivalently state the problem as a maximization problem.

(13.1)

(13.2)

Mathematical optimization, traditionally also known as mathematical programming, is the theory of
optimal decision making. Other than in machine learning, optimization problems arise in a large variety of
contexts, including scheduling and logistics problems, finance, optimal control and signal processing. The

underlying mathematical problem always amounts to finding parameters that minimize (cost) or maximize
(utility) an objective function in the presence or absence of a set of constraints. In the context of machine

learning, the objective function is usually related to the empirical risk, but we first take a step back and
consider optimization problems in greater generality.

of the
by

− f ,

∈

and
⊆ Rd is a set defining the constraints.

. Among all x
∈ Ω, we seek

will consist of such x
∈ Rd that satisfy certain

Optimality conditions

What is an optimization problem?

0 0

minimize f

(

(

minimizef (

)

x)=0

)
Ω

Ω

(x) = 0.f , . . . , f m , g

,

, . . . , g p(x)

x

(x)

x

x

x
x

objective function
unconstrained optimization problem
Ω

minimizer

Unfortunately, the above criteria are not able to identify global minimizers, as differentiability is a
local property. For convex functions, however, local optimality implies global optimality.

∇

There are simple examples that show that this is not a sufficient condition: maxima and saddle points
will also have a vanishing gradient. If we have access to second-order information, in form of the second
derivative, or Hessian, of f, then we can say more. Recall that the Hessian of f at x,

∇2f(x), is the d × d
symmetric matrix given by the second derivatives,

where x
∈ R d .

Optimality conditions aim to identify properties that potential minimizers need to satisfy in relation
to f(x). We will review the well known local optimality conditions for differentiable functions from
calculus. We first identify different types of minimizers.

Definition 13.1. A point x∗
∈Rdisa
• global minimizer of (13.2) if for all x
∈ Rd, f(x∗) ≤ f(x);
• a local minimizer, if there is an open neighbourhood U of x∗ such that f(x∗)

≤ f(x) for all
x U ;

In the one-variable case we have learned that if ∗ is a local minimizer of f
∈ C2([a, b]), then f′(x∗) = 0

and f′′(x∗)
≥ 0. Moreover, the conditions ′(∗) = 0 and f′′(x∗) > 0 guarantee that we have a local

minimizer. These conditions generalise to higher dimension, but first we need to know what f′′(x) > 0
when we have more than one variable.
Recall also that a matrix A is positive semidefinite, written A

 0, if for every x ∈ Rd, x>Ax ≥ 0,
and positive definite, written A

 0, if x>Ax > 0. The property that the Hessian matrix is positive
semidefinite is a multivariate generalization of the property that the second derivative is nonnegative. The
known conditions for a minimizer involving the second derivative generalize accordingly.

∈

• a strict local minimizer, if there is an open neighbourhood U of x∗ such that f(x∗) < f(x) for all
x
∈ U ;

• an isolated minimizer if there is an open neighbourhood U of x∗ such that x∗ is the only local
minimizer in U.

Without any further assumptions on , finding a minimizer is a hopeless task: we simply can not
examine the function at all points in Rd. The situation becomes more tractable if we assume some
smoothness conditions. Recall that k() denotes the set of functions that are k times continuously
differentiable on some set U. The following first-order necessary condition for optimality is well known.
We write
∇f(x) for the gradient of at , i.e., the vector

Let x∗
(x∗

x x

. Ifx∗
(x∗

∇

∇

∗
∈

∇

∈

i,j
f

f

C U

f x

f (x) =

∂2f) =
∂xi∂xj

x
f x

∂f) , . . . ,
∂xd

f

.

U
f

C1(U) U
) = 0

(

()

) = 0

Theorem 13.2.
x∗f

1 ≤ ≤ d

>

of . Then
be a local minimizer of
.

Theorem 13.3. Let f
∈ C2(U) for some open set U and x
∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite. Conversely, if
definite, then x∗ is a strict local minimizer.

and assume that for a neighbourhood of

is a local minimizer, then
and

∇2f (x∗) is positive

(∂f(∂x1

f

(x

)

)

2

Examples

with noise ε that satisfies

H {

The goal is to determine the
To determine these, we can collect

Collecting the data in matrices and vectors,

we can write the empirical risk concisely as

...
n

Minimizing over h
∈ H means minimizing over vectors

solves the unconstrained optimization problem

.. .

. As function class we take

and minimize the empirical risk with respect to the (normalized)

This is an example of an optimization problem with variables , no constraints (
andtheconstraintsetis Rp+1),andaquadraticobjectivefunction

, and the best

loss function:

are valid candidates

+ ···+ppβ=(β,.p)∈Rp+10..,β}.(13.3)
0 pfromdata.
sample realizations (from observations or experiments),

(13.4)

is then the vector that

We present two examples of optimization problems that can be interpretred as machine learning
problems, but have mainly been studied outside of the context of machine learning. The examples below
come with associated Python code and it is not expected that you understand them in detail; they are
merely intended to illustrate some of the problems that optimization deals with, and how they can be
solved.

Example 13.4. Suppose we want to understand the relationship of a quantity y (for example, sales data)
to a series of predictors x1, . . . , xp (for example, advertising budget in different media). We can often
assume the relationship to be approximately linear, with distribution

E ε

h : h x

β1X1

x

β β1 xi1

β 1 X 1 β X ,
β , . . . , β
n≥ p
(yi, xi1, . . . , xip), 1

βpXp

n

.

`

2

ε,

βpx

model parameters

all

2
2

0

x11

1

22.

p+1

=

Ω =

1
f(β) = 2n

R̂ ˆ 1(h)=2n

Y=β0

[] = 0

()=β0+

+

R̂ ˆ 1(h)=2n

1minimize2n

+

+

1= (2 n
1
= 2n

+ +

)

+

− y ‖

· · ·

· · ·

· · ·

‖ − ‖ 2 .

∈ R

− ‖

≤ i ≤ }

y

‖Xβ

‖Xβ

y Xβ

β

y

β

β

Xβ− y)>(Xβ − y
β>X>Xβ

− 2y>Xβ
y>y,

β



   y 1  = . . .  , y n

{

∑n(yi−(i=1



1X=...1

+· · · +

x1p..

 .  , x n p

ip))2 .



   β 0

 β  1  =  . .   , . β p

β

To see the first three and the last three rows of the dataset, we can use the "print" command.

We next have to load the data. The data is saved in a table with 573 rows and 2 columns, where the
first column list the mass and the second the basal metabolic rate.

where X> is the matrix transpose. Quadratic functions of the form (13.4) are convex, so this is a convex
optimization problem. If the columns of X are linearly independent (which, by the way, requires there to be
more data than the number of parameters p), this simple optimization problem has a unique closed form
solution,

β∗=(X>X)−1X>y. (13.5)

In practice one would not compute β∗ by evaluating (13.5). There are more efficient methods available,
such as gradient descent, the conjugate gradient method, and several variations of these. It is important to
note that even in this simple example, solving the optimization problem can be problematic if the number
of samples is large.

To illustrate the least squares setting using a concrete example, assume that we have data relating
the basal metabolic rate (energy expenditure per time unit) in mammals to their mass.1 The model we

use is Y = β0 + β1X, with Y the basal metabolic rate and X the mass. Using data for 573 mammals from
the PanTHERIA database2, we can assemble the vector y and the matrix X

∈ Rn×(p+1) in order to
computetheβ=(β0,β >1) .Here,p=1andn=573.WeillustratehowtosolvethisprobleminPython.
As usual, we first have to import some relevant libraries: numpy for numerical computation, pandas for
loading and transforming datasets, cvxpy for convex optimization, and matplotlib for plotting.
In [1]:

In [2]:

Out [2]:

http://esapubs.org/archive/ecol/E090/184/#data

(573, 2)

Import some important Python
modules import numpy as np
import pandas as pd
from cvxpy import *
import matplotlib.pyplot as plt

Load data into numpy array
bmr = pd.read_csv(’. ./ . ./data/bmr.csv’,header=None).as_matrix() #
We can find out the dimension of the data
bmr.shape

1

2
This example is from the episode “Size Matters” of the BBC series Wonders of Life.

http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data
http://esapubs.org/archive/ecol/E090/184/#data

In [3]:

In [4]:

In [5]:

print

[[13.108
[9.3918

[10.366

(bmr[0 :3 , :])

10.604]
8.2158]
9.3285]]

n = bmr.shape[0]
p = 1
X = np.concatenate((np.ones((n,1)),bmr[:,0 :p]),axis=1) y =
bmr[:,-1]

Display scatterplot of data (plot all the rows as points) bmr1
= plt.plot(bmr[:,0],bmr[:,1], ’o’)
plt.xlabel("Mass")
plt.ylabel("Basal metabolic rate")
plt.show()

where X is the mass and Y the BMR. We can find 0
described above. We first have to assemble the matrix

To visualise the whole dataset, we can make a scatterplot by interpreting each row as a coordinate on
the plane, and marking it with a dot.

The plot above suggests that the relation of the basal metabolic rate to the mass is linear, i.e., of the
form

and 1bysolvinganoptimizationproblemas
X and the vector y.

8

6

4

2

12

10

0
0 2 4 6 8

M a s s
10 12 14

B
as

al
 m

et
ab

o
lic

 r
at

e

Y β + β1X,

ββ

= 0

In [6]:

In [6]:

status: optimal
optimal value: 152.736200529558
optimal variables: 1.3620698558275837 0.7016170245505547

Create a (p+1) vector of variables
Beta = Variable(p+1)

Create sum-of-squares objective function
objective = Minimize(sum_entries(square(X*Beta - y)))
Create problem and solve it
prob = Problem(objective)
prob.solve()

print("status: ", prob.status)
print("optimal value: ", prob.value)
print("optimal variables: ", Beta[0].value, Beta[1].value)

plt.plot(bmr[:,0],bmr[:,1], ’o’)

xx = np.linspace(0 ,14 ,100)
bmr = plt.plot(xx, Beta[0].value+Beta[1].value*xx, color=’red’,\
linewidth=2)
plt.show()

Now that we solved the problem and have the values
line and see how it fits the data.

and , we can plot the

Even though for illustration purposes we used the CVXPY package, this particular problem can be
solved directly using the least squares solver in numpy.

β β0 = 1.362 1 = 0.702

8

6

4

2

12

10

0
0 2 4 6 8 10 12 14

In [7]: as

[1.36206997

import numpy.linalg
beta = la.lstsq(X,y)
print(beta[0])

0.70161692]

la

where we set entries with out-of-bounds indices to 0. The TV-norm naturally increases with increased
variation or sharp edges in an image. Consider for example the two following matrices (imagine that they
represent a 3
× 3 pixel block taken from an image).

Example 13.5. (Image inpainting) Even problems in image processing that do not appear to be machine
learning problems can be cast as such. An image can be viewed as an m

× n matrix U , with each entry
uij corresponding to a light intensity (for greyscale images), or a colour vector, represented by a triple of
red, green and blue intensities (usually with values between 0 and 255 each). For simplicity the following
discussion assumes a greyscale image. For computational purposes, the matrix of an image is often

viewed
as an mn-dimensional vector u, with the columns of the matrix stacked on top of each other.

In the image inpainting problem, one aims to learn the true value of missing or corrupted entries of an
image. There are different approaches to this problem. A conceptually simple approach is to replace the
image with the closest image among a set of images satisfying typical properties. But what are typical
properties of a typical image? Some properties that come to mind are:

• Images tend to have large homogeneous areas in which the colour doesn’t change much;

• Images have approximately low rank, when interpreted as matrices.

Total variation image analysis takes advantage of the first property. The total variation or TV-norm
is the sum of the norm of the horizontal and vertical differences,

The left matrix has TV-norm ‖U1‖TV . ,whiletherightonehasTV-norm‖U2‖TV=14.721
(verify this!) Intuitively, we would expect a natural image with artifacts added to it to have a higher TV
norm.
Now let U be an image with entries uij, and let Ω

⊂[m]×[n]={(i,j)|1≤i≤m,1≤j≤n}
be the set of indices where the original image and the corrupted image coincide (all the other entries are
missing). One could attempt to find the image with the smallest TV-norm that coincides with the known
pixels uij for (i, j)
∈ Ω. This is an optimization problem of the form
minimize
‖X‖TV subjectto xij=uijfor(i,j)∈Ω.
The TV-norm is an example of a convex function and the constraints are linear conditions which define a
convex set. This is again an example of a convex optimization problem and can be solved efficiently by
a range of algorithms. For the time being we will not go into the algorithms but solve it using CVXPY.

u u ,‖U

U2

i,j i,j i,j

0173
7320
2927

= 200

637

)2 + (u

1
0
0

)‖TV i+1 +1 2∑m∑n√=(ui=1j=1

 U 1 =


,j −



 , 

110

−

30
 2

The example below is based on an example from the CVXPY Tutorial3, and it is recommended to look at
this tutorial for other interesting examples!

Warning: the example below uses some more advanced Python programming, it is not necessary to
understand.

In our first piece of code below, we load the image and a version of the image with text written on it,
and display the images. The Python Image Library (PIL) is used for this purpose.

After having the images at our disposal, we determine which entries of the corrupted image are known.
We store these in a mask M, with entries mijk = 1 if the colour k of the (i, j)-th pixel is known, and 0
otherwise.

In [9]:

In [10]:

3http://www.cvxpy.org/en/latest/tutorial/index.html

from PIL import Image

Load the images and convert to numpy arrays for processing.
U = np.array(Image.open(". ./images/oculus.png"))
Ucorr = np.array(Image.open(". ./images/oculus-corr.png"))

Display the images
fig, ax = plt.subplots(1 , 2 ,figsize=(10 , 5))

ax[0].imshow(U);
ax[0].set_title("Original Image")
ax[0].axis(’off’)

ax[1].imshow(Ucorr);
ax[1].set_title("Corrupted Image")
ax[1].axis(’off’);

Each image is now an m x n x 3 array, with each pixel
represented by three numbers between 0 and 255,
corresponding to red, green and blue
rows, cols, colours = U.shape

Create a mask: this is a matrix with a 1 if the corresponding
pixel is known, and zero else
M = np.zeros((rows, cols, colours))
for i in range(rows):
for j in range(cols):
for k in range(colours):
if U[i, j , k] == Ucorr[i, j , k]:
M[i, j , k] = 1

Original Image Corrupted Image

http://www.cvxpy.org/en/latest/tutorial/index.html
http://www.cvxpy.org/en/latest/tutorial/index.html

Now that we solved the optimization problem, we have a solution stored in ’variables’. We have to
transform this back into an image and display the result.

We are now ready to solve the optimization problem using CVXPY. As the problem is rather big
(more than a million variables), it is important to choose a good solver that will solve the problem to

sufficient accuracy in an acceptable amount of time. For the example at hand, we choose the SCS solver,
which can be specified when calling the solve function.

In [11]:

In [12]:

Out [11]: 8263910.812250629

Load variable values into a single array.
Urec = np.zeros((rows, cols, colours), dtype=np.uint8)
for i in range(colours):
Urec[:, : , i] = variables[i].value

fig, ax = plt.subplots(1 , 2 ,figsize=(10 , 5))

Display the inpainted image.
ax[0].imshow(Urec);
ax[0].set_title("Inpainted Image")
ax[0].axis(’off’)

ax[1].imshow(np.abs(Ucorr[: , : ,0 :3] - Urec));
ax[1].set_title("Difference Image")
ax[1].axis(’off’);

Determine the variables and constraints
variables = []
constraints = []
for k in range(colours):
X = Variable(rows, cols)
Add variables
variables.append(X)

Add constraints by multiplying the relevant variable matrix
elementwise with the mask
constraints.append(mul_elemwise(M[:, : , k], X) ==
\ (M[:, : , k], Ucorr[: , : , k]))

Create a problem instance with
objective = Minimize(tv(variables[0],variables[1],variables[2]))

Create a problem instance and solve it using the SCS solver
prob = Problem(objective, constraints)
prob.solve(verbose=True, solver=SCS)

Inpainted Image Difference Image

Another typical structure of images is that the singular values of the image, considered as matrix,
decay quickly. The singular value decomposition (SVD) of a matrix A

∈ Rm×n is the matrix product

where U
∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a diagonal matrix

with entries σ1, . . . , σmin
{m,n} on the diagonal. Instead of minimizing the TV-norm of an image X,

one may instead try to minimize the Schatten 1-norm, defined as the sum of the singular values,
‖U‖S1 = σ1 + · · · + σmin{m,n}. The problem is then

minimize
‖X‖S1 subjectto xij=uijfor(i,j)∈Ω.
This is an instance of a type of convex optimization problem known as semidefinite programming.
Alternatively, one may also use the 1-norm of the image applied to a discrete cosine transform (DCT) or a
discrete wavelet transform (DWT). As this examples (and many more to come) shows: there is no unique
choice of loss function, and hence of the objective function, for a particular problem. These choices
depend on model assumptions and require some knowledge of the problem one is trying to solve.
We conclude by applying the total variation inpainting procedure to set a parrot free.

A=UΣVT,

Caged parrot Free parrot

Notes

14

Convexity

Theorem 14.3.

Definition
14.1. A convex
body

Definition

14.2.
λ , ,

and

The function is called if

77

A set C
⊆ Rd is convex if for all x, y ∈ C and

is a convex set that is closed and bounded.

LetS
⊆Rd.Afunction Riscalled

, the line

is convex and for all

Convexity is a central theme in optimization. The reason is that convex optimization problems have many
favourable properties, such as lower computational complexity and the property that local minima are
also global minima. Despite being a seemingly special property, convex optimization problems arise
surprisingly often.

→

Let x∗ be a local minimizer and assume that it is not a global minimizer. Then there exists a vector
dsuchthat ∗.Sinceisconvex,foranyλ and − λ)x∗ we have

− −

A function f is called concave, if
−f is convex.

Figure 14.1 illustrates what a convex function of one variable looks like. The graph of the function
lies below any line connecting two points on it. A function f has a domain dom(f), which is where
the function is defined. For example, if f(x) = log(x), then dom(f) = R+, the positive integers. The
definition of a convex function thus states that the domain of f is a convex set S. We can also restrict a
function on a smaller domain, even though the function could be defined more generally. For example,
f(x) = x3 is a convex function if restricted to the domain R≥0, but is not convex on R.

A convex optimization problem is an optimization problem in which the set of constraints Ω and
the function f are convex. While most general optimization problems are practically intractable, convex
optimization problems can be solved efficiently, and still cover a surprisingly large range of applications!

Convex function have pleasant properties, while at the same time covering many of the functions that
arise in applications. Perhaps the most important property is that local minima are global minima.

Convex functions

f

f

f

f

< f

≤ λ

f

f(λx

f(λx

f

− λ f

λ

f : S

− λ) y) λf (

) < λ f (

) < λ f (

λ

λ f

ifS

λ)f (y).

.

f

λ λ C .

S

∈

∈

→

≤ −

∈

−

∈ − ∈

∈

R

R Rd

(x

(y x

y

x

x

x

∗

y

x , y
[01]

(y)

(x)

:

)

)+(1

+(1

+(1

) (

)

x) + (1

x) + (1)(y

[0, 1]

∗)+(1 λ)f(

)

[0, 1]

=λy+(1)

= f(x∗).

x+(1)

Proof.
y

Let

strictly convex

convex

be a convex function. Then any local minimizer of is a global minimizer.

∗

x

Example 14.8.

Theorem 14.7.

y

((x))

((y))

x

y

, f

, f

where

Consider a quadratic function of the form

is symmetric. Writing out the product, we get

Figure 14.1: A convex set and a convex function

or the function log det(X), defined on the set of positive semidefinite symmetric matrices

There are useful ways of characterising convexity using differentiability.

.

This holds for all x on the line segment connecting y and x∗. Since every open neighbourhood U of x∗
contains a bit of this line segment, this means that every open neighbourhood U of x∗ contains an x = x∗
such that f(x)

≤ f(x∗), in contradiction to the assumption that x∗ is a local minimizer. It follows that
x∗ has to be a global minimizer.

Remark 14.4. Note that in the above theorem we made no assumptions about the differentiability of
the function f! In fact, while a convex function is always continuous, it need not be differentiable. The
function f(x) =
|x| is a typical example: it is convex, but not differentiable at x = 0.
Example 14.5. Affine functions f(x) =

〈x, a〉 + b and the exponential function ex are examples of
convex functions.

Example 14.6. In optimization we will often work with functions of matrices, where an m
× n matrix is

considered as a vector in Rm×n =∼ Rmn. If the matrix is symmetric, that is, if A> = A, then we only
care about the upper diagonal entries, and we consider the space Sn of symmetric matrices as a vector
space of dimension d = n(n + 1)/2 (the number of entries on and above the main diagonal). Important
functions on symmetric matrices that are convex are the operator norm‖A‖2, defined as

A

x

A

x>Ax

x

b>x

Ax
x

y x

x , y

x.

:‖ x ‖

>

f
2
f (

f C

f

f

f(f

c,

.

∇

∈

∈

∈

‖ ‖

≥ ∇

‖
‖
‖
‖

−

∈

S

6

(

(

d)
f (y

)

1x)= 2

x)+

2:= max
x

+

()

+

()

2. Let

1. Let . Then is convex if and only if for all ,

C2(Rd). Then f is convex if and only if
∇2f(x) is positive semidefinite for all

) is positive definite for all x, then f is strictly convex.
If

Rn×n

d

d

R R1

=1

2 ,
2

+

A

(x)= ‖Ax
A T A

x T A x

x T A x

Ax T Ax

b A.

xT AT Ax

A

2bT Ax b T b .

ann

ij.

2 = (b)(

: R

| (

(

b)=

x)=

=

+

(= x 1 · · · x n

(= x 1 · · · x n

∑n∑n=ijiji=1j=1

aij = aji

∑n= a x2iii=1

∑n=aijxj+ij=1

∇f(x) = Ax + ,

f

)a11 ··· a1..n

)  a 1 · · ·   a 1 1 x 1 + · · · . . . n 1 x 1 + · · ·

∑i+21≤i<j≤n

f

∂2f
bi,∂xi∂xj

  n

     x 1 . .  .  x n
+a1nxn

+annxn

f

f

∂f
∂
x

f

x f

a

a x x .

f

a

aij xi xj .

xi

2

− b ‖

2→ R
x)=c

} ,
2

Because

In summary, we have

is symmetric, we have

Using the previous theorem, we see that
typical example for such a function is

∇

is convex

This is a quadratic function, because it involves products of the
(x) are found by computing the partial derivatives of :

, and the above product simplifies to

is positive semidefinite. A

{

where c is the level. Each such level set is a curve in R , and a contour plot is a plot of a collection of such
curves for various c. If one colours the areas between adjacent curves, one gets a plot as in the following
figure. A convex function is has the property that there is only one sink in the contour plot.

− − −

Thematrix isalwayssymmetricandpositivesemidefinite(why?)sothatthefunctionfis
convex.

Aconvenientwaytovisualiseafunction isthroughcontourplots.Alevelsetofthe
function f is a set of the form

. The gradient and the Hessian of

if and only if

Notes

15

Lagrangian Duality

where x
∈ R n

assume that f
h(x) = 0 as
the set

Suppose

f
∈

(1)

,=(f, >1...,fm, 1
and the fi are convex, and the
=b,withh >j(x
j

x

subject to

81

is such that (1) holds. Then, since

In this lecture we study optimality conditions for convex problems of the form

is a convex function, for all we have,

We first generalize the standard first-order optimality conditions for differentiable functions to the setting
of constrained convex optimization.

>p,andtheinequalitiesarecomponentwise.We
j are linear. It is also customary to write the conditions
,>jjbeingthej-throwofA.Thefeasiblesetof(1)is

(1)

(15.1)

F ≤ }

It is easy to see that
F is convex if the fi are convex. If the objective f and the fi are also linear, then (1)

is called a linear programming problem, and
F is a polyhedron. Such problems have been studied

extensively and can be solved with efficient algorithms such as the simplex method.

() (

) h = (

) = a x

= x

∗) +

)

minimize f

0

()

()
≤

() =

)

=

()f f

,

h , . . . , h
h

b a

fi (x)

f

∗) , ,

f

Ax

x

y

x

y x

x y

x

x

x

fx
h x

y

,Ax

x

b

x

y

F

∈ F ,

≥

〈 ∇ f (

−

{ |

〈 ∇ f (

−

−

∗
〉 ≥ 0 ,

∗
〉 ≥ f

∈ F

∈ F

0
0,

n

∗

∗

∗

A first-order optimality condition

wher

e

Proof.

if and only if for all

Theorem 15.1. Let
problem of the form

C1(R
. Then

is the feasible set of the problem.

) be a convex, differentiable function, and consider a convex
optimization ∗ is an optimal point of the optimization problem

minimizef(x) subjectto x

then (15.2) says that

In other words, if we define the

defines a supporting hyperplane to the set

as

Recall the method of Lagrange multipliers. Given two functions

minimizef(x,y) subjectto

has a solution (x∗, y∗), then there exists a parameter , the

Figure 15.1: Optimality condition

and

Sincethederivativeatλ isnegative,thefunction isdecreasingatλ
smallλ>0,f(z(λ))<fz x∗,incontradictiontotheassumptionthatx∗

Example15.2.Intheabsenceofconstraints, Rn,andthestatementsaysthat

which shows that x∗ is a minimizer in . To show the opposite direction, assume that but
that (15.1) does not hold. This means that there exists a such that
〈 ∇ f (
Since both x∗ and y are in

Fandisconvex,anypoint x∗+λywith
in
F. At λ = 0 we have

. The intuition is as follows. The set

, such that

), if the problem

(15.2)

, and therefore, for
is a minimizer.

Given y such that 〈∇f(x∗),y ∗ 0,thenreplacing by2 wealsohavetheconverseinequality,
and therefore the optimality condition is equivalent to saying that f(∗) = 0. We therefore recover the
well-known first order optimality condition.
Geometrically, the first order optimality condition means that the set

is a minimizer
)x∗

〉 < 0 .
[0, 1] is also

x

y

x

y x

x

) ,y −
y

x

x

y
z(λ) = (1

(x∗) , y
− x∗

(z (λ))

x

x∗0.

x y
x

x∗
x∗y

∗

∗

∗

∇ L (

{

∀ ∈

− 〉 ≥

∇

F

F

z
| λ

| 〈∇ f (x∗

F .

F

:
〈∇ f

〉

〈∇

〈 ∇ f (

− ∇ f (

〉 ≥

−
∇

∈ F
−

〉

∗
〉 }

−
∈

df f λdλ

f

f (x∗, y∗

,

f

f

,

L(x, y, λ) = f (x, y) − λh(x, y),

x∗, y∗, λ) = 0 for some λ

M =
{(x, y) ∈ R2 | h(x, y) = 0}

f (x, y

h(x, y

λ

λ
∇h(x∗, y∗).

λ)

<0.

h(x, y

,
λ

(())

= 0
((0))= ()

)

=

=

(x∗

) =

=)

)

)

) = 0

= 0

n

=0

R

Lagrangian duality

Lagrangian

Lagrange multiplier

Denote by

The vectors λ
isRm

Assume that
The

the

From the second equation we get

and µ are called the
× R p .

of all the functions

subject to

or

j , i.e.,

Computing the partial derivatives gives the three equations

is not empty and let ∗ be the optimal value of (15.3).
of the system is defined as

2, and the first and third equations become

√Solvingthissystem,wegetsixcriticalpoint, ± 3).Tofindoutwhichoneoftheseisthe
minimizers, we just evaluate the function f on each of these.

We now turn to convex problems of the more general form form

(15.3)

of the system. The domain of

is a curve in R2, and the gradient
∇h(x, y) is perpendicular to M at every point (x, y) ∈ M. For someone

living inside M, a vector that is perpendicular to M is not visible, it is zero. Therefore the gradient
∇f(x, y) is zero as viewed from within M if it is perpendicular to M, or equivalently, a multiple of
∇h(x, y).

Alternatively, we can view the graph of f(x, y) in three dimensions. A maximum or minimum of
f(x, y) along the curve defined by h(x, y) = 0 will be a point at which the direction of steepest ascent
∇f(x, y) is perpendicular to the curve h(x, y) = 0.
Example tion 2withtheconstraint 22
√15.3.Considerthefuncf(x,y)=xyh(x,y)=x+y−3(acircleofradius3).TheLagrangianisthefunction

2

1

L D ×

L

D

D

D

∩

L

L

L

L

)
∩ · · · ∩

−

−

2 2
−

√
± ±

−

2
−
2 2

−

∩

−

)
∩ · · · ∩

λ

f1

p

∂
∂
x
∂
∂

y
∂
∂

λ

(x, y, λ

h

x2y

f, fi, h

x32xy y
x + y

(2,

λ(x2 y

λifi µi hi (

.

.) = f(x

= dom(f)

) +

dom(

=

) + µ

) =

(

dom(f)

x) = f(x

= 0

3 = 0 .

1) (0,

+

minimizef (x)
f (x)

≤
h(x) =

) +
i

=2xy 2λx=0

=x 2λy=0

=x+y 3=0.

dom(h

3).

(x)+
i

dom(hp)

)

x
2y

m

(x, λ, µ λ>f (x x

0
0,

Lagrangian

domain

dual variables Lagrange multipliers

> ∑m=1 ∑p=1

Lemma 15.5.

Definition 15.4.

Then for

Let

In particular,

The

and any , since each

be a feasible point for (15.3), that is,

of the problem (15.3) is the function

If the LagrangianL is unbounded from below, then the value is −∞.
The Lagrangian

L is linear in the λi and µj variables. The infimum of a family of linear functions is
concave, so that the Lagrange dual is a concave function. Therefore the negative

−g(λ, µ) is a convex
function.

L ≤ x
Since this holds for all feasible ∗, it holds in particular for the ∗ that minimizes (15.3), for which
f(x∗) = p∗.

A point (λ, µ) with λ
≥ 0 and (λ, µ) ∈ dom(g) is called a feasible point of the dual problem. The

Lagrange dual problem of the optimization problem (15.3) is the problem

maximizeg(λ,µ) subjecttoλ
≥0. (15.4)

If q∗ is the optimal value of (15.4), then q∗
≤ p∗. In the special case of linear programming we actually

have q∗ = p∗. We will see that under certain conditions, we have q∗ = p∗ for more general problems, but
this is not always the case.

Proof.

For any and

Lagrange dual

0 we have

g

g

0,hj

hj

g

λifi

p∗.

i

λj fj (

m,

µjhj

f .

f

p.

.) = f(x∗

) = inf

) +
i

) = inf
x

(

(x∗) = 0, 1

(x∗) = 0 and

∗) +
j

1

0,

(

(

)

)

()

λ

x

µ

f∗i(x)

µ

(x∗ , λ, µ

(λ , µ

x

λ

(λ , µ

(x, λ, µ)

(λ, µ)

x

(x, λ, µ).

(x∗ , λ, µ)

x

x

x

x

∗

∈ D

∗

∗

∗

≥

L

∈

≤

≥

≤

L

≤ L

≤ ≤ ≤ j ≤

x∗)
≤

p
≤

pR

0

∑m=1 ∑=1

Notes

16

KKT Conditions

The infimum over

The inequality constraints are
the form

we introduced the Lagrangian

For convex problems of the form

of this function is

subject to

Consider a linear programming problem of the form

subject to

if
else.

85

≥

0, while the equality constraints are

and defined the Lagrange dual as

. The Lagrange dual is therefore

i. The Lagrangian has

(1)

We saw that g(λ, µ) is a lower bound on the optimal value of (1). Note that here we wrote the conditions
hj(x) = 0 as system of linear equations Ax = b, since for the problem to be convex, we require that the
hj be linear functions. We will derive conditions under which the lower bound provided by the Lagrange
dual matches the upper bound, and derive a system of equations and inequalities that certify optimality,
the
Karush-Kuhn-Tucker (KKT) conditions. These conditions can be seen as generalizations of the first-order
optimality conditions to the setting when equality and inequality constraints are present.

) =

) =

= (

minimize

minimize

) = inf
x

f ()
()

≤
= b

)

g

,

b

b

x

(x, λ, µ

(λ , µ

(x, λ, µ)

g(λ, µ

x
fx

Ax

(x, λ, µ).

〈c, x〉
Ax=b
x0.

∑n∑mc,xλ(a>ixi+µjjxi=1j=1
c λ+A>µ)>x b>µ.

{unlesscλ+A>µ=µ>bcλ+A>µ=

a>i x

L

L

− x i ≤

〈 〉 −

−

− ∞

−
− ∞

L

−

−

−

−

−

0

0

0

∈ D

j

Constraint qualification

(1)

The Lagrangian is

which gives the solution

The dual function is therefore

From Lemma 15.5 we conclude that

Example 16.2. The problem minimize e−x
problem that does not satisfy strong duality.

Example 16.3. Consider the problem

by setting the derivative of the Lagrangian to

subject to

Once certain conditions, called constraint qualifications, hold, we can ensure that
which means d∗ = p∗. One particular such constraint qualification is Slater’s Theorem.

Theorem 16.1.
D of (1)

, we can find the infimum

Notethatifwewrite = and ,thenwegetthedualversionofthelinearprogrammingproblem we started out with,
and in this case we know that

is an example of a convex

− − ≤ { | }

The problem we started out with is convex, and if we assume that there exists a feasible primal point, then
the above inequality is in fact an equality by Slater’s conditions.

≥

In the example of linear programming, we have seen that the optimal value of the dual problem is equal to
the optimal value of the primal problem. In general, we have

− −

As the negative of a positive semidefinite quadratic function, it is concave. Moreover, we get the lower
bound

holds,

=

max

∗ = sup
λ 0 µ

(

1
4

(

0 1

minimize >

)=x>x+ >(

g(

) =

=

max
λ0 , µ

inf
x

x =

1
4

(

1
2

)

inf

(

) =

=

)

min{

0

=

0

=

=

0

=

=

L

{ − |

−

−

∇ x L (

≤

≤ i ≤

−

|

λ ≥ 0 } ≤

≤

≤

1≤ j ≤

≥

}

x≥ 0 } .

(x , µ

b>µc

yµ

x

(λ, µ)

µ

λ + A>µ

s=λ

µ> A> Aµ b>µ

x

(λ , µ

x
∈ D

Ax

A>µ.

µ> A> Aµ

x

b

x x subjectto Ax

µAx
− b). For any µ
µ) = inf

L(x,µ)x
x to zero:

x,µ)=2x+A>µ=0,

b>µ.

x>x Ax

b

,Ax

b

c>x |Ax

b

∗

{
∈ D

0, 0,

d p

d

f

g

g

) < ,

g

f

m,

f

p∗.

,

x2/y

.

, y

.

p.

p∗.

i

> ,
i

Then

problem
(Slater conditions) Assume that the interior of the domain

isconvex,andthatthereexistsapoint suchthat

∗, the primal optimal value coincides with the dual optimal value.

strong duality

is non-empty, that the

Karush-Kuhn-Tucker optimality conditions

and and

If p∗ is the optimal solution of (16.1) and
(the non-convex case)

subject to

≥

From this is follows that for any primal feasible point

Consider now a not necessarily convex problem of the form

0 we also conclude that at such optimal points,

wherethelastinequalityfollowsfromthefactthathx∗) ∗∗j(=0andλifi(x) ≤
1 i m.Itfollowsthattheinequalitiesareinfactequalities.Fromtheidentity

This condition is known as complementary slackness. From the above we also see that
Lagrangian
L(x, λ∗, µ∗), so that the gradient of that function is zero:

for and

) dual variables, then we have seen that (this holds even in

− ≤ −

The difference f(x)
− g(λ, µ) between the primal objective function at a primal feasible point and the

dual objective function at a dual feasible point is called the duality gap at x and (λ, µ). For any such
points we know that
∗∗g,)(x,
∈

and if the gap is small we have a good approximation of the primal and dual optimal values. The duality
gap can be used in iterative algorithms to define stopping criteria: if the algorithm generates a sequence
of primal-dual variables (xk, λk, µk , then we can stop if the duality gap is less than, say, a predefined
tolerance ε.
Nowsupposethatwehavepoints ,∗suchthatthedualitygapiszero.Then

∗ minimizes the

(16.1)

Collecting these conditions (primal and dual feasibility, complementary slackness, vanishing gradient), we
arrive at a set of optimality conditions known as the Karush-Kuhn-Tucker (KKT) conditions.

0 ()

(

)

(

∗) = g(

=inf
x

()

minimize

[(

∗)=

f ()
()

≤
() =

)]

(

)

0

λ f

f

f

p , q

,

p∗

p f

g

, f

µ h

x

x

x

λ µ

λ µ

(x∗ , λ∗ , µ

(λ, µ).

x,

(x)g

x
fx

hx

(λ, µ).

x

≤ ≤

≥ ≤

≤

≤

∇ x L

1≤ j ≤ p

0.

0
0,

∗

∗

∗ i i

x∗ , λ∗ µ)

λ
 ∗ , µ ∗)

 ∑m ∑pf(x)+ λ∗ x ∗ifi()+ jj

∑i=1j=1m∑pf(x∗)+λ∗x∗∗x∗ifi()+µjhj(i=1j=1
f (x∗),

∑mf(x∗)=f(x∗)+λ∗x∗ifi()i=1

λ∗ifi(x∗)=0,1
≤i≤m.

 x)

Theorem 16.4. (KKT conditions) Let x∗ and (λ∗, µ∗) be primal and dual optimal solutions of
with zero duality gap. The the following conditions are satisfied:

Moreover, if the problem is convex and the Slater Conditions (Theorem 16.1) are satisfied, then any
points satisfying the KKT conditions have zero duality gap.

x x

f (x∗
h(x∗

λ∗

∗i i(x∗

∗ x j (x(∗) +
i

(∗) +
j

) ≤
) =
≥
)=0,1

)=0.f λ f µ

λ f

∇ h

m

(16.1)

∇ ∇

≤ i ≤

0
0
0

∗ i i ∗ jx x∑m=1 ∑p=1

Notes

17

Support Vector Machines I

for for

Notethatwecanreplacethe and −1 with any other positve or negative quantity by rescaling the
and b, so this is just convention. We can also describe the two inequalities concisely as

(17.1)

In the simplest case there is a set of labelsY={−1,1}andthesetoftrainingpoints{x1,...,x}⊂Rdn
is linearly separable: this means that there exists an affine hyperplane h(x) = w>x + b such that
h(xi) > 0 if yi = 1 and h(xj) < 0 if yj =

−1. We call the points for which yi = 1 positive, and the
ones for which yj =

−1 negative. The problem of finding such a hyperplane can be posed as a linear
programming feasibility problem as follows: we look for a vector of weights w and a bias term b (together
a (p + 1)-dimensional vector) such that

In this lecture we return to the task of classification. As seen earlier, examples include spam filters, letter
recognition, or text classification. In this lecture we introduce a popular method for classification, Support
Vector Machines (SVMs), from the point of view of convex optimization.

A hyperplane separating the two point sets will in general not be unique. As we want to use the linear
classifier on new, yet unknown data, we want to find a separating hyperplane with best possible margin.

Let δ+ and δ
− denote the distance of a separating hyperplane to the closest positive and closest negative

point, respectively. The quantity δ = δ+ + δ
− is then called the margin of the classifier, and we want to

find a hyperplane with largest possible margin.
We next show that the margin for a separating hyperplane that satisfies (17.1) is δ = 2/

‖w‖2. Given
a hyperplane H described in (17.1) and a point x such that we have the equality w>x + b = 1 (the point
is as close as possible to the hyperplane, also called a support vector), the distance of that point to the
hyperplane can be computed by first taking the difference of x with a point p on H (an anchor), and then
computing the dot product of x− p with the unit vector w/‖w‖ normal to H.
As anchor point p we can just choose a multiple cw that is on the plane, i.e., that satisfies

〈w, cw〉+b =

89

Linear Support Vector Machines

− 1 ≥ 0 .

b≤ − 1 , −i + b≥ 1 ,

+1

i=1,

i+b)

+ = 1

y

y y .w>x

>i(wx

w>xj

w

j

0. This implies that 2, and consequently

subjectto y >i i+b)− 1 ≥ 0 , 1
Note that b is also an unknown variable in this problem! The factor

just to make the gradient look nicer. The Lagrangian of this problem is

Figure 17.2: Computing the distance to the hyperplane

. The distance is then

Figure 17.1: A hyperplane separating two sets of points with margin and support vectors.

in the objective function is

Similarly, we get δ − /‖ .Themarginofthisparticularseparatinghyperplaneisthusδ=2/‖w‖.
If we want to find a hyperplane with largest margin, we thus have to solve the quadratic optimization
problem

‖ w ‖ 2

w x

b ww,
〉 w‖ 2 ‖ w ‖
b b

= .w ‖ w ‖ ‖ w ‖
w

p

x , w
w

x

w

w

2)w
w

w,2 ‖ w

w
‖w‖

H

in.

1/2

c= b/w

δ+= x+

1
= +

= 1

1minimizew,b2
(

=

=

1

(b/‖

+
‖

− ‖ ‖

〈

‖
−
‖ ‖

‖

−

〈 〉

‖ ‖

‖

b
〈‖

≤ ≤

〉‖

6

L

∇ w L
L

‖ 2 −
i

−

1minimize2

1λ)=‖ 2
1

=
2

)

=

)

=

> = 0

=0.

+

+

e

X
w

(w

(w

(w

w

w>w −

λ

λ

λ>Xw −

>iwxi

w − X λ
y>λ

bλ>y

, b ,

∂
∂b

, b

,

, b

,

λiy λ y b λi

λi,

i i

m

∑m=1

∑i=1

where

where we denote by
gradient with respect to

is the vector of all ones.

thematrixwiththey >ixi asrows.Wecanthenwritetheconditionsonthe
and b of the Lagrangian as

(17.2)

If yT λ = 0, then the conditions (17.2) cannot be satisfied and the problem is unbounded from below.
If yT λ = 0, then the first condition in (17.2) is necessary and sufficient for a minimizer. Replacing w by X>λ
and λ>y by 0 in the Lagran

{gianfunctionthengivestheexpressionfortheLagrangedualg(λ),−1λ>XX>∑λ+mλyT2i=1iifλ=0g(λ)=
−∞ else.

Finally, maximizing this function and changing the sign, so that the maximum becomes a minimum,
we can formulate the Lagrange dual optimization problem as

λ > X X > λ
−λ>esubjecttoλ≥0, (17.3)

Notes

18

Support Vector Machines II

where

subject to

subject to

is the vector of all ones. The Lagrange dual optimization problem is

The linear separation problem was introduced as the problem of finding a hyperplane

To get b, we can choose one of the equations in which i , and then find b by setting b = yi(1 −
yw>ixi).WiththeKKTconditionswrittendown,wecangoaboutsolvingtheproblemoffindinga
maximum margin linear classifier using methods such as the barrier method.

93

(P)

(D)

Note that there is one dual variable λi per data point i. We can find the optimal value by solving the dual
problem (D), but that does not give us automatically the weights w and the bias b. We can find the
weights by w = X>λ. As for b, this is best determined from the KKT conditions of the problem. These
can be written by combining the constraints of the primal problem with the conditions on the gradient of
the Lagrangian, the condition λ

≥ 0, and complementary slackness as

that would separate data points xi with label yi from data points xj with label yj = −1. For
convenience, we collect our data in matrices and vectors, where X

∈Rn×disthematrixwithrowsy>ixi
and y the vectors of labels yi.

Assuming that the data is linearly separable, the problem of finding a separating hyperplane of
maximal margin can be formulated as

λi

H

y

b

(1

1minimize‖ 2

1minimize2

= d: T

= 1

i+b))=0for1
> = 0

>=0.

λ = 0

+ b = 0}

−

‖

{ ∈

y − ≥
≥

6

−

≤ i ≤ n

≥

≤

e

w

X w +

x

λ > X X > λ −

b e
λ

>i(wx
w

− X λ
y λ

λ>e

x

w x

e y

λ

− X T x

R

2

0
0

0.

0,

Extensions

The function K is called a
radial basis function (RBF),

subject to

〈 〉

. A typical example, often used in practice, is the Gaussian

So far we looked at the particularly simple case where (a) the data falls into two classes, (b) the points
can actually be well separated, and (c) they can be separated by an affine hyperplane. In reality, these
three assumptions may not hold. We briefly discuss extensions of the basic model to account for the
three situations just mentioned.

The key to extending SVMs from linear to non-linear separation is the observation that the dual form of
the optimization problem (D) depends only on the dot products

〈xi,xj ofthedatapoints.Infact,the
(i, j)-th entry of the matrix XX> is precisely

〈xi, xj 〉 !
If we map our data into a higher (possibly infinite) dimensional space ,

and consider the data points ϕ(xi), 1 ≤i≤ ,thenapplyingthesupportvectormachinetothesehigher
dimensional vectors will only depend on the dot products

≥

for some parameter µ. The Lagrangian of this problem and the KKT conditions can be derived in a similar
way as in the separable case and are left as an exercise.

What happens when the data can not be separated by a hyperplane? In this case the constraints can not
be satisfied: there is no feasible solution to the problem. We can still modify the problem to allow for
misclassification: we want to find a hyperplane that separates the two point sets as good as possible, but
we allow for some mistakes.

One approach is to add an additional set of n slack variables s1, . . . , sn, and modify the constraints to

w > x + b
≥1−s,fory=1,w>iiixj+b≤−1+sj,foryj=−1,si≥0.
T ∑hei-

thdatapointcanlandonthewrongsideofthehyperplaneifsi>1,andconsequentlythesumni=1siisanupperboun

donthenumberoferrorspossible.Ifwewanttominimizethenumberofmisclassifiedpoints,wemaywanttomini

mizethisupperbound,soasensiblechoiceforobjective
function would be to add a multiple of this sum. The new problem thus becomes

Note that we don’t need to know how the function looks like! In the equation for the hyperplane we simply
replace w>x with K(w, x). The only difference now is that the function ceases to be linear in x: we get a
non-linear decision boundary.

Non-exact separation

Non-linear separation and kernels

K

y
i
s
i

K

ϕ :

n

e

ϕ

ϕ) ,ϕ(

∑nµsjj=1
b 1+si

in,

.

.

,

2/2σ2

(xi , xj

(x , y

‖ w ‖ 2

w>xi

xi xj

− ‖ − ‖

1minimize2
(

0

) =

) =

+

+)
, 1

()

0−
≤ ≤

p→ H ,

≥

〉

H

1≤ i ≤ n

R

kernel function

x y

Multiple classes

•

•

(using

the results.

the data set randomly into

) the classifier with the training data;

and

a support vector classifier with optional parameters;

the response using the test data and compare with the true response;

An important aspect to keep in mind is that when testing the performance using the test data, we should
compare the classification accuracy to a naive baseline: if, for example, 80% of the test data is classified
as +1, then making a prediction of +1 for all the data will give us an accuracy of 80%; in this case, we
would want our classifier to perform considerably better than getting the right answer 80% of the time!

One is often interested in classifying data into more than two classes. There are two simple ways in which
support vector machines can be extended for such problems: one-vs-one and one-vs-rest. In the one-vs-
one case, given k classes, we train one classifier for each pair of classes in the training data, obtaining a
total of k(k

− 1)/2 classifiers. When it comes to prediction, we apply each of the classifiers
to our test data and choose the class that was chosen the most among all the classifiers. In the one-vs-

rest
approach, each train k binary classifiers: in each one, one class corresponds to a chosen class, and the
second class corresponds to the rest. By associating confidence scores to each classifier, we choose the
one with the highest confidence score.
Example 18.1. An example that uses all three extensions mentioned is handwritten digit recognition. Sup-
pose we have a series of pixels, each representing a number, and associated labels

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
We would like to train a support vector machine to recognize new digits. Given the knowledge we have,
we can implement this task using standard optimization software such as CVXPY. Luckily, there are
packages that have this functionality already implemented, such as the SCIKIT-LEARN package for

Python.
We illustrate its functioning below. The code also illustrates some standard procedures when tackling a
machine learning problem:

• Train

• Create

• Report

Predict

Separate

FIT

training data test data;

In [15]: import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline
from sklearn import svm, datasets, metrics
from sklearn.model_selection import train_test_split

In [3]:

In [16]:

Out [2]:

predicted = svc.predict(X_test)
print("Classification report for classifier %s:\n%s\n"

% (svc, metrics.classification_report(y_test, predicted)))

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=0.001,

kernel=’rbf’, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

digits = datasets.load_digits()

Display images and labels
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):
plt.subplot(2 , 4 , index + 1)
plt.axis(’off’)

plt.imshow(image, cmap=plt.cm.gray_r, interpolation=’nearest’)
plt.title(’Training: %i ’ % label)

Turn images into 1-D arrays
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

Create classifier
svc = svm.SVC(gamma=0 .001)

Randomly split data into train and test set
X_train, X_test, y_train, y_test = train_test_split(data,
digits.target, test_size = 0 .4 , random_state=0)
svc.fit(X_train, y_train)

Now apply prediction to test set and report performance.

In [4]:

In [5]:

In [6]:

Out [3]:

[94]

skimage
skimage import data
skimage.transform
skimage import io
os

resize

smalldigit1 = resize(mydigit1 , (8 ,8))
smalldigit2 = resize(mydigit2 , (8 ,8))
mydigits = np.concatenate((np.round(15*(np.ones((8 ,8))-

smalldigit1[: , : ,0])).reshape((64 ,1)).T,
np.round(15*(np.ones((8 ,8))-
smalldigit2[: , : ,0])).reshape((64 ,1)).T),axis=0)
After some preprocessing, make prediction
guess = svc.predict(mydigits)
print guess

mydigit1 = io.imread(’images/digit9 .png’)
mydigit2 = io.imread(’images/digit4 .png’)
plt.figure(figsize=(8 , 4))
plt.subplot(1 ,2 ,1)
plt.imshow(mydigit1 , cmap=plt.cm.gray_r, interpolation=’nearest’)
plt.axis(’off’)
plt.subplot(1 ,2 ,2)
plt.imshow(mydigit2 , cmap=plt.cm.gray_r, interpolation=’nearest’)
plt.axis(’off’)
plt.show()

Classification report for classifier SVC(C=1.0, cache_size=200,
class_weight=None, coef0=0.0,vdecision_function_shape=None,

degree=3, gamma=0.001, kernel=’rbf’, max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001, verbose=False):
precision recall f1-score support

0 1.00 1.00 1.00 60
1 0.97 1.00 0.99 73
2 1.00 0.97 0.99 71
3 1.00 1.00 1.00 70
4 1.00 1.00 1.00 63
5 1.00 0.98 0.99 89
6 0.99 1.00 0.99 76
7 0.98 1.00 0.99 65
8 1.00 0.99 0.99 78
9 0.99 1.00 0.99 74

avg/total 0.99 0.99 0.99 719

import
from
from
from
import

import

Now try this out on some original data!

Notes

19

Iterative Algorithms

also known as the
rate of change is

Considering this as a function of
atα=0,

To see why this makes sense, let

99

, the rate of change in direction

In the method of gradient descent, the search direction is chosen as

at

〈 ∇ 〉

in the direction
,if 〈 p , ∇ f

be a direction and consider the Taylor expansion

is the derivative of this function

. This formula indicates that the
(k)
〉 < 0 .

in a way that ensures that f(xk+1) ≤f(k).Theparameter kiscalledthesteplength,whilepkisthe
search direction. The are many ways in which the direction pk and the step length αk can be chosen. If
we take
pk=

−∇f(xk), (19.1)
then we take a step in the direction of steepest descent and the resulting method is (unsurprisingly) called
gradient descent. If there is second-order information available, then we can take steps of the form
p =

−∇2kf(x)−1k∇f(xk). (19.2)
The resulting method is called Newton’s Method. If applicable, Newton’s method tends to converge
faster to a solution, but the computation at each step is more expensive.

Most modern optimization methods are iterative: they generate a sequence of points x0, x1, . . . in Rd in
the hope that this sequences will converge to a local or global minimizer x∗ of a function f(x). A typical
rule for generating such a sequence would be to start with a vector x0, chosen by an educated guess, and
then for k≥ 0, move from step k to k + 1 by

p

(xk+

xk

x

p

x

p,

x

p,

(xk
〉

p

f (xk)

x

p
x

+1

f αp

α

f kαp)
α
f

α

.

f

pk,

α

,

O (α2).

k

|α=0

xk

k

k

k

k

d(x+
d

) = f(x

=

=

k) + α

=

+

)

) +

− ∇ f (

〈 ∇

directionalderivativeof at
, and we have a descent direction

Gradient descent

negative

Consider a function of the form

The Cauchy-Schwarz inequality gives the bounds

The Hessian is symmetric and positive semidefinite, with the gradient given by

for some α > 0.
For a visual interpretation of what it means to be a descent direction, note that the

vector p and the gradient
∇f()atapoint isgivenby(seePreliminaries,Page9)

We see that the rate of change is the smallest when the first inequality is an equality, which happens if

θ between a

Figure 19.1: A descent direction

Any multiple α
∇f(xk) points in the direction of steepest descent, but we have to choose a sensible

parameter α to ensure that we make sufficient progress, but at the same time don’t overshoot. Ideally, we
would choose the value αk that minimizes f(xk

− αk∇f(xk)). While finding such a minimizer is in
general not easy (see Section Lecture 4 for alternatives), for quadratic functions in can be given in closed
form.

This is negative if the vector p forms and angle greater than with the gradient. Recall that the gradient
points in the direction of steepest ascent, and is orthogonal to the level sets. If you are standing on the
slope of a mountain, walking along the level set lines will not change your elevation, the gradient points to
the steepest upward direction, and the negative gradient to the steepest descent.

− ‖ p ‖ 2 ‖∇ f (

∇

∇

)‖ 2 ≤ 〈 p ,∇

− ∇ (

‖ p ‖ 2 ‖∇ (

−

− b ‖ .

)
〉 ≤ ‖ p ‖ 2 ‖∇ f (‖

x

〈 x ,

x

x

(x
〉

p

‖Ax

x

x

A> (Ax b

x

2
2

2

f

f

f

f

α f

f x ‖
π/

.

.

(

) =

=

x)=

1(x)= 2

(

)

)

)

2cos(θ).

2

)k k

k

k

angle

Linear least squares

If we
set to
zero,

To find the best

we get the step length

Note also that when we have

The method of gradient descent proceeds as

k, we compute the minimum of the function

k k

k, we can compute the next as

The gradient descent algorithm for the linear least squares problem proceeds by first computing r0
A>(b
− Ax0), and then at each step

Does this work? How do we know when to stop? It is worth noting that the residual satisfies r = 0 if and
only if x is a stationary point, in our case, a minimizer. One criteria for stopping could then be to check
whether

‖rk‖2 ≤ ε for some given tolerance ε > 0. One potential problem with this criterion is that the
function can become flat long before reaching a minimum, so an alternative stopping method would be
to stop when the difference between two successive points, ‖xk+1 − xk‖2, becomes smaller than some
ε>0.

Example 19.1. We plot the trajectory of gradient descent with the data

As can be seen from the plot, we always move in the direction orthogonal to a level set, and stop at a
point where we are tangent to a level set.

fxk −αA>(Axk−b)). (19.3)
and compute the minimum of (19.3) by setting the derivativer A>(b−Axk

x

A

rk and

= A>(b

= A>(b
= A>(b

x

k

r

k

x

Axk

A(xk

Axk
−

r>krk
r>A>Ar

b

krk

kAr

k

α >kA (Axk

rk
Ar
k

r>krk
r>A>
kArk
xk + αkrk
r −α>kkAArk.

b

r

(xk + αrk) = 〈∇f(xk + αrk),
A>(A(xk + αrk)
− b), rk〉
A>(Ax 2k

− b), rk〉 + α 〈A>Ark,
r>
k rk + αr>k A>Ark = 0,

r

r

α >kA Ark.

k

k

k

k

k

k

k+1

k+1

+1

+1

+1

2
2
2 .

2

:=) =

) =

=
=

=

=

=

k =

=

=

() = (

(x k)

)

+

=

))

) = r

)

=

α→ 7
−∇

〈

〈

−

−
−
−

−

‖
‖

−

‖
‖

−

〉

〉

α

r

ϕ′(α

α

k

α

d fdα

ϕ

α

f

α

α
α

.

2=
10

03
 , 1



1=−1.0

Figure 19.2: Trajectory of gradient descent

While for a quadratic function of the form ‖Ax−b‖2 it was possible to find a step length αk by minimizing
the function in the direction of steepest descent, in general this may not be possible or even desirable. The
step length is often called the learning rate in machine learning. A good step length
• is not too small (so that the algorithm does not take too long);

• is not too large (we might end up at a point with larger function value);

• is easy to compute.

There are conditions (such as the Armijo-Goldstein or the Wolfe conditions) that ensure a sufficient
decrease at each step. Another common approach is backtracking: in this method one uses a high initial
value of α (for example, α = 1), and then decreases it until the sufficient descent condition is satisfied.

Step length selection

20

Convergence

(b)

The case

(c) withorder

,if

is called

, if there exists a constant

Iterative algorithms for solving a problem of the form

.

103

, such that for sufficiently large ,

minimizef(x), x
∈Rd (20.1)

generate a sequence of vectors x0, x1, . . . in the hope that this sequence converges to a (local or global)
minimizer x∗ of (20.1). In this lecture we study what it means for a sequence to converge, and how to
quantify the speed of convergence. We then study the convergence of of gradient descent for quadratic
functions and for convex functions satisfying certain smoothness assumptions.

A sequence of vectors {x dk}k∈N0⊂Rconvergestox∗withrespecttoanorm‖·‖ask→∞,written
xk

→ x, if the sequence of numbers ‖xk − x∗‖ converges to zero. Iterative algorithms will typically not
find the exact solution to a problem like (20.1). In fact, computers are not capable of telling very small
numbers (say, 2−53 in double precision arithmetic) from 0, so finding a numerically exact solution is in
general not possible. In addition, in machine learning, high accuracy is not necessary or even desirable
due to the unavoidable statistical error.
Definition 20.1. Assume that a sequence of vectors

{xconvergestox∗k}k∈N0.Thenthesequenceis
said to converge

(a) linearly (or Q-linear, Q for Quotient), if there exist an r (0, 1) such that for sufficiently large k,

p = 2

lim
k

=0,

p M > 0

M

.

.

k

x

x

x

x

xk
xk

x
∗
x
∗

x x‖

‖

−

−

‖
‖

∗‖ ≤

∗‖ ≤ r ‖ x

‖

− ‖
− ‖

∈

∗ k

− x

−

‖

‖k
p

k+1

k+1

+1

→ ∞

∗

Convergence of iterative methods

superlinearly

quadratic convergence

where the

Therefore

Throughout this section,
least squares problem

and the

refers to the

which shows that the sequence has rate of convergence r

are given by

At the minimizer x∗, the residual is −∇f ∗ andifthesequencexkconvergesto
norms of the residuals converge to . Conversely, the residual is related to the difference k
−

-norm. We study the convergence of gradient descent for the

These definitions depend on the choice of a norm, but any two norms on Rd are equivalent, convergence
with respect to one norm implies convergence with respect to any other norm. Note that the definitions

above start with the assumption that the sequence
{xk} converges to x∗. Therefore, for sufficiently large

k,
‖xk − x∗‖ < 1 and if {xk} converges with order of convergence 1, then

f(x ‖Ax−b‖2, (20.2)
where A

∈ Rm×n with m ≥ n is a matrix of full rank. The function f(x) is convex, since it is a quadratic
functionwithpositivesemi-definiteHessian T .Gradientdescentproducesasequenceofvectorsby
the rule
= k + α r ,

,the
by

(20.3)

This shows that convergence of order p implies convergence of any lower order and also superlinear
convergence.

Example20.2. kConsiderthesequenceofnumbersxrforsome.Clearly,
→∗ k /
)r>1xkx=0ask.Moreover,r

‖ ‖
where

‖B‖=maxx=0 / istheoperatornormofamatrix withrespecttothe2-norm.
Consequently,ifthesequence k convergestozero,sodoesthesequence

‖xk − x∗‖. A reasonable
criterion to stop the algorithm is therefore when the residual norm

‖ k‖ is smaller than a predefined
tolerance ε > 0.

The following theorem (whose proof we omit) shows that the gradient descent method for linear least
squares converges linearly with respect to the norm. The statement involves the condition number of
A1. This quantity is defined as

κ (A † ,

k

k

k k

k

step length residual

→ ∞

‖ · ‖

‖
‖

∗ k− ‖
‖ ‖ ‖
‖ ‖

∗+1− ‖ ≤− ∗ ‖ p − 1 ‖

−

‖ · ‖

−

k‖ ≤ ‖ (

− ∇ f (

−r = A>(b −Axk

‖xx

‖Bxx
r

xk
xk

‖ r k ‖
2 ,
‖ A r k
‖ 2
r

x
x

A>b

A> A)−1

−Axk

A

A)=
‖ A

r

A A

xk+1 x

rk

rk=A>b

(x

x

b

−Axk

x

−Ax∗

A> A)−1‖ ‖ r k
B

r

x

A> A(xk

x

x∗).

x∗
x∗

6

αk

αk

x

M

p >

∗

‖<M.

xrk,

,

.=

= (

1
=

2rk

=
0

) = (

2

minimize 1) = 2

(

(

)=0

= 1

(211==2rkr2rk
.

) =

=

))=

)

k+1 +1

Convergence of gradient descent for least squares

‖
1

The concept of condition number, introduced by Alan Turing while in Manchester, is one of the most important ideas in
numerical analysis, as it is indispensable in studying the performance of numerical algorithms.

where A† is the
defined as A†

In particular, the gradient descent algorithm converges linearly. We can deduce Theorem 20.3 as a
special case of a more general convergence result from convex function satisfying certain smoothness

assumptions.

of A. If A
∈ Rm×n with m ≥ n and linearly independent columns, it is

>. The condition number is always greater than or equal to one.A> A)−1

x x
2(A
2
(A

x x∗

pseudoinverse
A

The error in the -th iterate is bounded by

‖ − ∗‖ ≤ ‖ − ‖k
κ
κ .

= (

k + 1

)− 1
) + 1

k+1

Theorem 20.3.

()

Notes

21

Gradient Descent

A function f is called
−

for some

107

if the gradient is Lipschitz continuous:

(21.3)

for all x, y
∈ R d .
Lipschitz continuity lies somewhere between continuity and differentiability. If f

∈ C1(Rd) is
Lipschitz continuous with Lipschitz constant L, then

‖∇f(x)‖ ≤ L. Similarly, β-smoothness implies
that
‖∇2f(x)‖ ≤ β. Recall from Lecture 14 that a function f ∈ C1(Rd) is convex if and only if
f (y) +

〈∇f(y),x−y〉≤f(x) (21.2)
for all x, y

∈ Rd. The following result shows that β-smoothness is equivalent to a quadratic upper bound
on the difference between the function value f(x) and its linear lower bound (21.2).

In this lecture we will derive a convergence result for gradient descent applied to a convex function
f
∈ C1(Rd). Convergence results in optimization are often stated in terms of the difference f(xk) − f∗,

where f∗ = f(x∗) and x∗ is a minimizer of f. By the convexity of f, we have

f (xk)
− f (x∗) ≤〈∇ f (x k) , x k − x∗〉 ≤ ‖∇ f (x k) ‖ · ‖ x k − x∗ ‖ , (2 1 . 1)

which allows to relate the convergence of f(xk)
− f∗ to the convergence of ‖xk − x∗‖. In order to

guarantee good convergence rates, we need some additional smoothness and boundedness conditions.

The most common smoothness condition in optimization is Lipschitz continuity, applied to a function or to
its gradient.

Definition 21.1. A function f : Rd Rk is called Lipschitz continuous with Lipschitz constant L > 0,
if for all x, y
∈ R d ,

f(x)f(y) xy.

f C

f

β

≤ f (

L

β > 0

) β

→

∈

‖ ∇ f (

→

‖

β

〈 ∇ f (

)− ∇ f (

‖ ≤

‖ ≤

− y 〉

· ‖ − ‖

· ‖ x − y ‖

,
∈

β
‖ − ‖ 2 .

1

:

(d)

(x) y) + + 2

R R

R R

d

d

x y

y) ,x

x y

x y

Gradient descent for smooth convex functions

Lemma 21.2.

-smooth

Let be -smooth and convex. Then for any ,

where

iterates

In particular,

Proof.
f(x) f(y)

is

)and

β -smooth.

Conversely, if a convex function

is a minimizer of

satisfies , then for all ,

Letf
∈ C1(Rd) be a function that is β-smooth and convex. Then for any

} generated by gradient descent with constant step length 1/β satisfy

d,the

f

f

f

f

f

(1/β

f(x

f

f

f
f

f

f

f(x

f

f

f

f)

f (

C1Rd

) f

f(y

f

− f ∗

f .

2β
‖ k ,

dt.

.

.

f

{

−

−

0 ≤ (∇f(

∇

−

1
‖∇ β

−

)− 〈 ∇ f (

∈

− ∇

)−〈∇

−

∇

≤

〈

∇

−

≤〈∇

〈∇ f

− y 〉

≤

≤

≤

‖ 2 ≤ 〈∇ f (

1x
− y 〉 − β

−

−

‖ ∇ f (

)− ∇ f (

‖

x− y 〉

)− ∇ f (

)− ∇ f (

,
∈

−〉 .

‖

‖

β‖ z − y ‖ 2 ,

〈∇ f − −〉

−〈∇ f −〉

‖∇ f − −∇ f () ‖

· ‖ − ‖
1

‖ − ‖ 2 β t ‖ − ‖ 2 , 0

−

∈

∫10

0 2

2

2

0

∗ = f(x∗

(

(

)

)

(

)(

)

(

(

) (

y)=(

(

y)=

)

()

(y)

=

(y + t(x)),

+ 2

(+t()),

(), dt

(+t())

dt

dt=
2

)

)

(z) (

R

R

k

d

We can then write

where we used the convexity
of we now set z = y
−

to bound

Adding this expression to the same one with the roles of

(21.3)

exchanged, we get

The fact that this implies β-smoothness of follows from the Cauchy-Schwartz inequality.

We can, and will, use (21.3) and (21.4) as alternative definitions of β-smoothness.

andthe -smoothnesstoboundf
and simplify the resulting expression, we get

(21.4)

where the first inequality follows from applying Cauchy-Schwartz, and the second from the assumption of
β -smoothness.
For the second claim, assume that satisfies the bound (21.3). For any x, y, z
∈ Rd we have

).If

The first inequality follows from the convexity assumption. For the second inequality, represent
− asanintegral:

x

x

x

y

x

x

(y)

(y)

x

y) ,x

x

x

x

y

x f(z)+f(z)− f(y)
x) ,x
− z〉 + 〈∇ f (y) , z − y〉
f(x)
−f(z) β
f (x))

−〉 − 1 f (x) , x y ‖∇ f (x 2 β

x and y

)),x

x y

y) ,x y

y

y

y x y x y

y x y

y x y y

x y

x y x y

x

y

∫10

∫10

∫ β

Theorem 21.3.
xk

∗

∗

Proof.

Set

Using (21.3) with

Observe first that

∗, so that

and

‖ −

Taking the inverse, and shifting the index from k

where in addition to (21.4) we used the fact that
non-increasing, we get from (21.1) that

as claimed.

We can get even better convergence when assuming

Definition21.4.Afunction 1Rdiscalled
,d,

where for the first implication we divided both sides by k k
that ∆k/∆k+1

≥ 1. Applying the same bound recursively to

‖

, we get

whereweused(21.5)tolower-bound kinthesecondinequality.
∆k+1
≤ ∆k. We can rearrange the inequality (21.6) to

.

for some

If α = 0 this is just the derivative characterization of convexity. Note that a function f
convex if and only if the function f(x) α x 2/2 is convex.

In particular, since

is

, and for the second implication we used
k, we get

if for every

-strongly

is

(21.6)

(21.5)

In particular, we see that

∈

‖

−

− ‖

‖

≥

∈

〈∇

−

∗ ≤‖

− ‖ ‖

k
⇒

⇒

− y 〉

‖ −)∇ x k −∗

‖ − ∗ ‖ 2 − 〈 ∇ k

(21.4)
≤ ‖ k − ∗ ‖ 2 − ‖∇ 2

∇ (∗

− ‖

‖ x − y ‖ 2 ≤ f

k− ∗ 〉

‖ 2 ≤ ‖

−

f k−∗ ≤ ‖∇ k ‖ · ‖ 0 −∗ ‖ .
k

− ∇ k k+1,weget

k+1
− k ≤ − ‖∇ f k) ‖ 2 . β
k+1
−k kk+1−.Then
(21.5)
k 2 1
k
≤ − ‖∇ ‖ ≤ − β ‖ x 0 − x∗
‖∇ ‖

‖

‖

‖∇ (β 2
k

− x∗‖2

‖

‖ − ‖

x y

x

y x

x

x

x

xk (1/β

xkx

x x

y , x

x

x ‖ 2
x x

x k

x

x

x x

x

x

x

x

x

x

x x

k

k

k

k

k+1

k+1

k+1

k+1

∆2 k
x0

−

0

2

,
k+1

k+1

2

∗

∗

∗

∆=f(kkx)

∆

=

∆

+
2β

1
∆

2 =
=

y) +

()

()

()

∆

+ 1
x 0 x∗

+ 2

1+
‖ ∆ 0

+1to

∗ 2=∆k
≤

(x) f f(x)

x=x (1/β)f(x)=

1
f(x)f(x) (

2

f (x) f (x) = ∆ ∆

−1∆f(x)2β2

f(x)

)

()

) = 0 .

(

1+

)

11∆k+
≤∆2β‖ x 0 −∗ k x ‖ ∆ k + 1
1 1
+
≤1∆2β‖x0−∗k x‖∆
∆∆+1
1/∆

≥+1.2x0x∗

∆2k,

1
∆

)

f

f

f (

f

C

f

k
2β

f

α

α

k

β
‖

f ()
2

f (,β
1
fβ
f

k

k
β

,

.

f

,

α > 0

α

strong convexity

-strongly convex
R

Lemma 21.9.

Remark 21.5.

Example 21.7.

≥

Theorem 21.6.
x0d

singular values

The gradient is
gives

The largest and smallest

Assume that

The difference

. Starting with

is called the Bregman divergence associated to
convex and β-smooth is to say that for any ,

(and therefore

of the matrix

so that this converges in a single iteration.

Example 21.8. Let f(x) = 1
‖A−‖22xbforA∈Rm×nwith

difference between the function and its approximation is

A well-known characterization of the condition number of a matrix is κ
this we recover the convergence result from Lecture 20.

The proof of Theorem 21.6 relies on the following auxiliary result.

are defined as

. To say that a function
Rd,

The term (21.7) is therefore bounded from above and below by the squares of the
and by the smallest singular value of :

) in Theorem 21.6. Then

, and assume

d, gradient descent with step length

is

), and from

-strongly

has full rank. The

(21.7)

This means that we can, locally, upper and lower bound the function by quadratic functions. In particular,
βα.

∈

〈∇ (

∇

)− ∇ (

D

− b ‖ 2 − ‖

‖ −

− y 〉 ≥

− b ‖ 2

)‖ − ‖ 2 ≥ ‖

−

∗‖ ≤

−

∈

α
‖ x − ‖ 2 ≤ D f (2

0
∈ R

0
− x 0

−

≤

‖ x ‖ 2 .

‖ x − y ‖ 2

)‖ 2 ≥ σ

‖

)− 〈 ∇ f (

−

−

≥

β
‖ x − y ‖ 2 . 2

‖∇ (β

− y 〉

)‖ − ‖ 2
(

∈

∈ R d ,

)
− ∇ f (

− ‖

‖

f

k

d

=

1
2

(x)=α

=

) = max
x

) := f(x

)

)

κ = 1

α
) =
2

− 1
+ 1

=0=x∗

1+
α +

) = min
x

) 1= ‖2

) =

(

)

)

)

2/(α + β) = 1

(‖Ax

x

1(A

y) ,x

(Ax

x

Ay

(x ,y

A

y

x

x

‖Ax‖,

x y

y

f(x

x

=x

A(x

y

y

x ,y)

x

(Ay− b)T A(x
A

σn(A

y

y) ,x

‖Ax‖.

2n(A x y
A

x , y

f x

A(x

1(A)

A

y

y

(A

κ β/α.

f

f

fx

σ

α

f

α β

β

αβ
α + β

f (

f

κ
κ

,

m n

/ α

x∗
‖ ,

f

.

σ

C

/σn

.

.

α

/α

σ21

k+1

1

=1 =1

1

2

2

R

R

where

Let be -strongly convex and smooth. Then for any

Letf
∈ C1(Rd) be a function that is α-strongly convex and β-smooth. Then for any

, the iterates of gradient descent with constant step length 2 (+ β) satisfy

largest singular value

‖ ‖ ‖ ‖

()

Proof.
f(x)

Replacing

Set (x f x) α2
. We therefore get

From Lemma 21.2 it follows that

in this expression, we get

The left-hand side of this inequality gives

2. Since

The right-hand side, on the other hand, gives

is

Collecting the terms in (27.2) and (21.10) involving
involving x) fy)2and 2ontheright,weget

-strongly convex,

-smooth and satisfies the inequality

) is convex. Moreover,

where in the inequality we used Lemma 21.9 to bound the term 〈∇f(xk), xk − x∗〉, and simplified the
resulting expression. The claim now follows by dividing the numerator and the denominator by α.

on the left, and the terms

(21.10)

(21.8)

(21.9)

Multiplyingthisexpressionwith givesthedesiredinequality.

ProofofTheorem21.6.Setη .Sincef∗,wewillomitthistermwheneverit
appearsinthefollowing(sothatwecanthinkof (k f ∗wheneverwesee f(xk)).

ϕ
αx

ϕ(

ϕ

f (

‖∇f

(

α+β
β− α

ϕ

α

α

α

α ,

α ,

ϕisβ

ϕ(),

f α

αβ, β α
β α / α β

/ α β
f

) f
α

β

α

α

fβ α
α f

f

ϕ

f (

f(),

f(),

α

.

α

2

.

α .

∇ϕx

)

):=(

(

)

(

)

)

)

2 =
=

+

+

=

=

f ()

() (+)

:=2(+)

1

2

(

)
2
) + α

)

)

+

() =

x

x

x

x

x

y

y

x

y

y

x

x

x

x

k

x

k

y x

(y) , x

x y

y x y

y x

y x

x

(x)

(x)

(x)

(y)

(x 2
2
x y
2

(x 2 +
2
x y 2 .

x

x

(y) , x

x

f (y , x

y

y

y

y) 2 +

y x y

y x y

x

y

y,x

y

∇

〈 ∇ f (

−

〈∇

1
‖∇ f (β
− α

‖

)− ∇ f (

−

)− ∇ f (

−

)− ∇ f (

〈∇ ϕ (

−

‖

− ∇ ‖

〈 ∇ f (x − ∇

−

−

)−〈∇ ϕ

− ‖ x ‖

‖
‖

(≤

)− ∇

− y 〉

− y 〉 ≤ f

〈 ∇ f ()−∇ f

−〉 ≥ 1 y ‖∇ ϕ (β− α

−〉 ≥ 1 y ‖∇ f (β− α)− ∇ f (

)−∇ ϕ (‖

−

− y〉 − α ‖ x − y ‖ 2 .

(x− −〈∇ −〉
− ‖ ‖ − ‖ ‖ 〈 − y 〉

≤ ‖ − ‖ 2

− ‖ ‖ ‖ y ‖ 2 − 2 〈 y , x 〉)

β
−
‖ − ‖ 2

‖

(x + α y ‖ 2 = ‖∇ −∇ ‖

) ‖ x − y ‖ 2 − −〈∇ −∇ −〉

〈∇ −∇ −〉
‖ − ‖

−〉 ≥ ‖ − ‖ 2 1 x y + ‖∇ f (x) −∇ f (y) ‖ 2 .
− β − α
−

∇(x)=0
∇ x) −∇ (x) ∇
− η∇ f (x k) − x∗ ‖ 2 = ‖ (x k − x∗) − η∇ f (x k) ‖ 2
− x

)∗ ‖ 2 − 2 η〈∇ f (x k) , x k − x∗〉 + η 2 ‖∇ f (x k) ‖ 2 β − α 2 ‖ x k −

k+1

2

2

Lemma 21.2

∗

and the inequality f
convergence bound

Using the bound

from the

which is a considerable improvement over the 1 convergence bound when only assuming
In particular, the number of iterations to reach accuracy ε is of order O(log(1/ε)).

-smoothness assumption, we get the

The convergence of gradient descent under various smoothness assumptions is a classic theme in convex
optimization. The presentation in this chapter is based on [4]. A standard reference for many of the tools
used in the analysis of gradient descent (and a wealth of additional information) [19].

β -smoothness.

)(κκ

f∗
≤

f f e

e−

β

,

−

−

(−κ−2κ+1

xk
− x∗‖2

∗ β x 0
≤ ‖ − x 2

/k

‖

≤

·

()

()

)−12=1+1

(β /2)
‖

xk

2

2

4/(κ+1) ,

∗
−

kx

4 kκ+1

Notes

22

Extensions of Gradient Descent

We have seen that for a β-smooth convex function f
∈

generatedbygradientdescentwithsteplength satisfies

Accelerated gradient descent, proposed by Y. Nesterov, begins with initial values
and the proceeds as follows for k
≥ 0 :

There are lower bounds that show that this rate is optimal for gradient methods.

113

), the sequence of iterates

where x∗ is a minimizer of . This implies that we need a number of iterations of order O(1/ε) to reach
accuracy ε. If in addition the function is α-strongly convex, then we get linear convergence with ratio
(κ
−1)/(κ+1),where = .Fortheconvergenceofthefunctionvalue,thisimplies

shows that only O(log(1/ε)) iterations are needed to reach accuracy ε. In this lecture we will have a look
at two extensions of gradient descent. The first is an accelerated version, while the second extension
covers common situations in which the function to be minimized is not differentiable.

The method can be interpreted as carrying over some momentum from previous iterates: instead of only
taking into account the current iterate, the gradient step is based on a combination of the current and the
previous step. This method has favourable convergence properties.

1/β

f

f(x

f
f
κβ/α

f(xk

f

f

/β

− f(x∗

O

2 x
β k

C

O (1/k),

−

−

k −

k

− ∇

)≤ ‖

−

{

∈

+1)

k+1

0

1

∗
‖ 2 .
2

1

(+1))

0 0
1

0

()

=

=

(

(

1

)

∗)=

) =

(e−

k 1+(xkk+2
η f (yk)

(

− x
(+1)

)

= =

R

R

k

k

4k/κ

d k} k ≥

d

x

y k

xk+1

x

y

x

x

x

y x x

x

∗

−

−

Acceleration

length
Letf

∈ C1(Rd) be convex and β-smooth. Then accelerated gradient descent with step
converges to a minimizer x∗ of f with rate

Theorem 22.1.

Proximal gradients

where both g
term.

and

A special case is the

Consider the function

are convex, but only

1-norm. Here, we can write

The subdifferential is additive, in the sence that if),
then
(x0 AT(BT(

is differentiable. The term h(

The objective functions arising in machine learning often have the form

and are matrices and f

where Πi(x) = xi is the projection on the i-th coordinate. It follows that the subdifferential of the
can be described as

∂
‖x‖1 = {z : zi = sign(xi) if xi = 0, zj ∈ [−1, 1] if xj = 0}.
Using the subdifferential, we have the following optimality condition.

1-norm

is typically a regularization

The elements of ∂f(x) are called subgradients.

If f is differentiable at x, then there exists only one subgradient, which coincides with the gradient.

Example 22.4. Consider the function f(x) =
|x|. The differential is then

∑where‖x‖=d1i=1|xi|and.TheproblemofminimizingthisfunctionisoftenreferredtoastheLASSOprobleminstatistics.Thepurpo
These are solutions that have only few entries that are significantly larger than 0.

Definition22.3.Let beaconvexfunction.Thesubdifferentialoffat istheset

Rd Rd T

∂ f (

h

f

f

∂ f (

∂f

f

λ >

f (

g

∂fx

, f (

x >
x
x <

,

,

∂h

,

.

f

)+h(

:

x)=

(

0

) =

1x)=‖ 2

() =

x) = g(x) + h(x

x)+g

+

)

(

0
=0

0

)

)

(x)=
g(Ax B x

Ax

x

y

A

Bx).

x

x

B

x

≤ f(y)

Example 22.2.

Example 22.5.

Theorem 22.6.
0x).∈

→

{ g∈

‖ x ‖ 1

:
∀ y∈

6

− b ‖ 2 λ‖ x ‖ 1

− }

  1

[−1,1]−1

∂ g A x) +

∑d=|Πi(x)|i=1

dR RLet be a convex function. Then is a global minimizer of if and only if

Notethatx∗ h
a function of the form f
computing

For composite functions

where A represents the linear map projects
using proximal gradient methods.

with

∂h x∗ . The
starts with a vector

‖ ‖ ‖

onto the entries indexed by

0, and then for

), this means that

. This problem can be solved

for minimizing
0 proceeds by

where we set entries with out-of-bounds indices to 0.
Now let U be an image with entries uij, and let Ω

⊂[m]×[n]={(i,j)|1≤i≤m,1≤j≤n}
be the set of indices where the original image and the corrupted image coincide (all the other entries are
missing). One could attempt to find the image with the smallest TV-norm that coincides with the known
pixels uij for (i, j)
∈ Ω. This is an optimization problem of the form
minimize
‖X‖TV subjectto xij=uijfor(i,j)∈Ω.
Alternatively (see Exercise 8.3), one can solve a regularized problem

∈

There are different possible strategies for generalizing gradient descent to make it work with non-
smooth functions. One would be to simply pick a subgradient at each step and follow that direction. Note
that this may not be a descent direction. One common strategy for composite functions is to perform
a gradient descent step based on the smooth function g, and then project onto the subgradient of h.
Projection onto the subgradient is done via the proximal operator

Example 22.7. Recall the image inpainting problem from Lecture 13. An image can be viewed as an
m

× n matrix U, with each entry uij corresponding to a light intensity (for greyscale images), or a colour
vector, represented by a triple of red, green and blue intensities (usually with values between 0 and 255
each). For simplicity the following discussion assumes a greyscale image. For computational purposes,
the matrix of an image is often viewed as an mn-dimensional vector u, with the columns of the matrix
stacked on top of each other. In the image inpainting problem, one aims to learn the true value of missing
or corrupted entries of an image. There are different approaches to this problem. A conceptually simple
approach is to replace the image with the closest image among a set of images satisfying typical properties.
But what are typical properties of a typical image? Some properties that come to mind are:

• Images tend to have large homogeneous areas in which the colour doesn’t change much;

• Images have approximately low rank, when interpreted as matrices.

Total variation image analysis takes advantage of the first property. The total variation or TV-norm
is the sum of the norm of the horizontal and vertical differences,

f

u

g

∂h(

λ

∈ C 1 (

x).

.

u ,

(x) = g(x

minimize

) + h(x)

g(x)

1
proxh(x) = arg min

y 2
:= prox (x) satisfies x∗

− x∈ ()
(x) = g(x) + h(x)

(xk+1=proxxkηh

+

)2 + (u

2 +h(y)

Ω

)U

‖ A X − U

X

X

x

)(xk).

‖

−∇

−

− η∇ g

‖ x − y ‖

−

≥

‖TV i+1

2
Ω TV,

+1 2

R

,j i,j

d

i,j i,j

proximal gradient method
k

∑m∑n√=(ui=1j=1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

This is known as

If a function h has the form

then the proximal mapping associated to

(see Figure 22.1).

i

has the form

Figure 22.1: Soft thresholding

Even though it seems that a proximal gradient method would require solving an optimization problem
within an optimization problem, closed form expressions are known in many cases.

Example 22.8. Consider the function h(
|x|)= ||forsome 0.Then

Accelerated gradient descent goes back to Nesterov’s work [20]. A more in depth analysis can be found in
[19] and [4]. An interesting interpretation of accelerated gradient descent in terms of differential
equations is given in [26]. The proximal operator is discussed in detail in Chapter 6 of [1].

It follows that if h(x) = λ ‖x‖1, then we can apply the proximal operator by applying the soft thresholding
operator
Tλ to each coordinate of x.

For the proximal gradient method it is possible to obtain similar convergence results as for gradient
descent.

soft thresholding

h(

h

hi (xi)

) , . . . ,

λ

λ

,

x

λ >

x λ
x [λ,λ]

x λ

.

proxh(

proxh(

x)= T

x) = (proxh1

λ(x) :=
+

proxh(Td))

≥
∈ −
≤ −

λ x

 
 x −

  0 − x

∑dx)==1

(x1

d

Notes

23

Stochastic Gradient Descent

We consider an objective function of the form

The problem of finding functions that minimize the empirical risk is

In what follows we assume that the functions fi are convex and differentiable. If n is large, then computing
the gradient can be very expensive. However, and considering the machine learning context, where f(x)
is an estimator of the generalization risk Eξ[fξ(x)] of a family of functions fξ parametrized by a random
vector ξ, we can shift the focus to finding an unbiased estimator of the gradient. Quite trivially, choosing
an index j uniformly at random and computing the gradient of fj(x) gives such an unbiased estimator by
definition:
n

The fi are often assumed to be convex and smooth. In addition one often considers a regularization term
R(w). In what follows, we abstract from the machine learning context and consider purely the associated
optimization problem. Hence, as usual when dealing only with optimization problems, we switch notation
and denote the variables to be optimized over by x.

(23.1)

In this lecture we introduce Stochastic Gradient Descent (SGD), a probabilistic version of gradient
descent that has been around since the 1950s, and that has become popular in the context of data
science and machine learning. To motivate the algorithm, consider a set of functions

H={h:w∈Rdw},where
each such function depends on d parameters. Also consider a smooth loss functions L, or a smooth
approximation of a loss function. Given samples{ niii=1 ,definethefunctions

} ⊂ X × Y

i
∈ { 1 , . . . , n } .

) =

[

(

(

(

1
x)=
n

i

(

i),

1minimize
w
∈Rd ni

1
x)]=
n

i

)

)

f

f

f

L(hw

.

,

i(w x

x ,

y

y i

) ,
i(w

EU U

∑n f= 1

∑nfi(x).=1

∑fi(x=1

117

Stochastic Gradient Descent

so that
∇ f

empirical

Next, take a step in direction :

where P {U=j}=1/nforj∈[
proceeds as follows. Begin with
gradient at xk:

Taking the expectation conditional on

is an unbiased estimator of
at the optimal point

, we get

where we used the fact that the expectation satisfies
bound

As in the analysis of gradient descent, we get

f. Assuming that
∗as

We can now state the convergence result for stochastic gradient descent.

has a unique minimizer

}.TheStochasticGradientDescent(SGD)algorithmd. At each step , compute an unbiased estimator gk of the

). For the last term we use the

∗, we define the

(23.2)

(23.3)

−

where ηk is a step length (or learning rate in machine learning jargon).
While there are many variants of stochastic gradient descent, we consider the simplest version in

which gk is chosen by picking one of the gradients
∇fi(x) uniformly at random, and we refer to this

as SGD with uniform sampling. A commonly used generalization is mini-batch sampling, where one
chooses a small set of indices I

⊂ {1, . . . , n} at random, instead of only one. We also restrict to the
smooth setting without a regularization term; in the non-smooth setting one would apply a proximal
operator. Since SGD involves random choices, convergence results are stated in terms of the expected
value.LetUbearandomvariablewithdistributionP i
} for∈[n].Then

E

E

E

E

E

E

E

E

R

E[g

−
η2E[

EfU

‖

[‖∇ f U

−

‖

‖

‖

‖

|

−

‖

−

‖

∇

{ 0
∈

[‖∇ f U

∇

∗‖ 2] ≤

‖∇
‖∇
‖∇

∗‖ 2 − 2

| ∇

− ∇
− ∇
− ∇

‖∇ f

−

∇ f U
‖ 2
‖ 2

‖

x∗‖ 2 − 2 〈∇ f k)
‖∇ k ‖ 2 U

∇ (x ∇ f (

〉

‖

2‖∇ f U

∗‖ 2]
‖∇ f U
2

− 〉

‖

‖

σ

f

f
f
f

, . . . , n

η

f
f
f

k

f(xk

,

.

η
f

/n

∇ f (x

i

),

η

.

E

σ .

σ2 .αβ

.

[

()

[

=

=

[(

k] = [
≤ 2 [
= 2 [

n]=1 x

] =‖

(

1
x)]=
n

i

=

(x)

(x)

(x)

k] =

+

[

)

= = 1

(x)=

(

(

()

)]=

)

(x∗)+ (x

(x∗)]+2

(x∗)]+2

+

2 2+

)

[(

(

)

)

]

x x

x

x

g

x

x

x

x

x

− x

xk

2
| x k

x

x

x

x

x g

x

x

x , x k

x
| xk] ,

x

x

x

x

x

k+1 2

k+1

2

2

k+1

2

2

2

k

k

k

U

k

U

U

k

k

k
U

k
U

k
U

k
k

U

U

U

k

k

U
variance

Proof.

Theorem 23.1. Assume the function f is α-strongly convex and that the fi are convex and β-smooth for
i
∈ [n] and 4β > α. Assume f has a unique minimizer x∗ and define the variance as in (23.2). Then for

any staring point x0, the sequence of iterates
{xk} generated by SGD with uniform sampling and step

length η = 1/(2β) satisfies

{ U

∑n∇fi=1

f

∑nx∗‖1)2]=ini=1

() α k 1 − ‖ x 0 − x∗ 4 β

η
〈∇fxk)xkU(,

∗

∗

∗

∗

∗

∗

since

Using the

we get that

With step length η

where we used that

where we used that

Using the characterization of

Plugging this into (23.3), we get

, so that we get

-strong convexity, we get the bound

smoothness from Lecture 21, namely

Applying this bound recursively (and moving the index down), we get

for the last equality. Hence, we get the bound

, and taking the expected value over all previous iterates, we get

(23.4)

f

α

f

f ∗

f

4β > α.

β

fi(

α
4
β

α
4β

f

ηα

α
4
β

ηβ

2η2β)

kσ
β

j

σ
,αβ

,

,

α

σ2.

σ .β

,

α
4
β

η2σ2.

,

η2σ2.

(

[

[

(

(

[

(xk), xk−

(x)

E[
‖ x k + 1 −

= 1/(2β)

∗)=0

[f (

(

)

)

(

]

(

)

]

(

k 1] =
i

(2η

(1

∗α)+‖ 2

[

))‖

2 +
2

2 2
+

)

(

〉 + 2

(

)

2+ 2

)

〉 + 2‖

〈∇

)
≥

[‖∇ f U

−

‖

∇

‖

−

‖

|

1
‖∇ β

‖∇ U

)−∇ f U

‖

−

≤

∗‖ 2] ≤

|

]≤ ‖ x

∗
〉 ≥ f

‖

‖

)−∇ f i

|

|

−

−

−

≤

∗‖ 2] ≤

−

−

∗‖ 2 −

‖

‖

)‖ 2 ≤ 〈∇ f i

−

−

−

−

‖

‖

‖

−

−

〈 ∇ f (

−

)−∇ f i

−

)−∇ f i

∗
‖ 2 ≥ 2

‖

〉

‖

−

−

− y〉 ,

‖

−

〉

−

‖

〉

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

y

x

x

x

x

x

x

x

x

x

x

∗i(x)

x∗
〉 ,

x

i (y) , x

x

x

x

x

x

x

x

x

x

x

x

k+1 2

k+1

2

2

2

0

0

2

2

E

E

E

E

E

E

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

x

(1

(1

(1 −

(1

) k

) k

)

(x)−∇ f

∑n‖∇f(xkin=1
(23.4) n
≤ β
∑〈∇f(xkini=1
n
β
∑=〈∇f(xk),xkini=1
n

− β
∑〈∇ f n i = 1
= β
〈∇ f (x) , x k −

≤ 2 β〈∇ f (x) , x k − x∗

2
x∗

‖2]+22

(2∑−11−2=0
2) j

Example 23.2. logistic regression

where

function

The function

over a vector of weights
pairs (xi, yi) and yi

the resulting classifier is the function

∇

is the matrix with the

Consider the problem of

−

as rows,

≤

is convex (Exercise 7.6(a)), and the gradient is

,and

Figure 23.1: The path of gradient descent and of stochastic gradient descent with constant step length.

, where the aim is to minimize the objective

i

. This problem arises in the context of a binary classification problem with data
,
}. Setting

has coordinates

We can apply different versions of gradient descent to this problem. Figure 1 shows the typical paths
of gradient descent and of stochastic gradient descent for a problem with 100 data points. Note that
using a naive approach to computing the gradient, one would need to compute 100 gradients at each
step. Stochastic gradient descent, on the other hand, fails to converge due to the variance of the gradient
estimator (see Figure 2).

The version of SGD described here is the most basic one. There are many possible extensions to the
methods. The include considering different sampling schemes, including mini-batching and importance
sampling. These sampling strategies have the effect of reducing the variance σ2. In addition, improve-
ments can be made in the step length selection and when dealing with non-smooth function, where the
proximal operator comes into play.

f

f

p

h p > /
p /

− p(w)) ,

y 1 , . . . , y

, 1 i n.

w
01

) =

) =

) =

exp(
) =

1 + exp(

e
:=

1 + e

log 1+exp(

1
2
1
2

X

(w

f(x

xT
i

i(w

(w

X T (y

y = (

xT
iw)
xT

iw)

)xTiw))yxTiiw

p(w)Rn×d Tn) n

∑ n (= 1

p

(

{10

∈

∈ {

−

≤ ≤

∈

x T w

x T , w

R

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

Extensions

2.0

1.5

1.0

0.5

0.0

0 5 10 15 20 25 30 35 40

2.0

1.5

1.0

0.5

0 50 100 150 200 250 300 350 400

Figure 23.2: Convergence of gradient descent and SGD.

The origins of stochastic gradient descent go back to the work of Robbins and Monro in 1951 [21]. The
algorithm has been rediscovered many times, and gained popularity due to its effectiveness in training
deep neural networks on large data sets, where gradient computations are very expensive. Despite its
simplicity, a systematic and rigorous analysis has not been available until recently. The presentation in
this chapter is based loosely on the papers [11] and [2]. A more general and systematic analysis of SGD
that includes non-smooth objectives is given in [10]. These works also discuss general sampling
techniques, not just uniform sampling.

Notes

Part III

Deep Learning

123

24

Neural Networks

We can then replace the function h

125

−

with the smooth function

A convenient property of the sigmoid function is that the derivative has the form

≤

We already encountered this problem when studying linear support vector machines. Visually, we can
represent this classifier by a node that takes d inputs (x1, . . . , xd), and outputs 0 or 1:

Such a unit is called a perceptron. One interpretation is that the node represents a neuron that fires if a
certain linear combination of inputs, wT x, exceeds a threshold

−b. It is sometimes useful to approximate
the indicator with a smooth function, and a convenient candidate is the sigmoid

We begin by considering the problem of binary classification using a linear function. Given a vector of
weights w
∈ Rd and a bias term b ∈ R, define the classifier

Neural Networks are a powerful class of functions with a wide range of applications in machine learning
and data science. Originally introduced as simplified models of neurons in the brain, nowadays the
biological motivation plays a less prominent role. Instead, the popularity of neural networks owes to their
ability to combine generality with computational tractability: while neural networks can approximate
most reasonable functions to arbitrary accuracy, their structure is still simple enough so that they can be
trained efficiently by gradient descent.

Connectivity and Activation

1{ w T x

σw T x

w T
x
w T
x

}

−

,b(

,b

x

h

g

σ′x

σ x

b

.

σ x

b
>
b

w

w

x)=

(

+

x)=(

=

()=σ(x)(1

1() = 1 + e

1
0

+b).

()),

+
+

0
0

{

so that the gradient of can be computed as

Other activation functions that are commonly used are the hyperbolic tangent, tanh(x), and the
linear unit (ReLU), max

{x, 0}. Figure 24.1 illustrates these different activations functions.

The first layer is the input layer, while the last layer is the output layer. Hence, a neural network with `
layers is a function of the form `(, where the Fk are recursively defined as

Figure 24.2: A fully connected neural network.

We interpret a neural network as consisting of different layers. To the k-th layer we associated a
linear map W k : Rdk−1 → Rdk and a bias vector k ∈ Rdk. One then applies the activation function
componentwise, to obtain a map

σ(k +bk).

Figure 24.1: Activation functions

A feedforward neural network arises by combining various perceptrons by feeding the outputs of a
series of perceptrons into a new perceptrons, see Figure 25.5.

and W k
∈Rdi×dk−1,bk∈Rdkfor ≤k≤ (with 0).Thelayersbetweentheinputandoutput

layer are called the hidden layers.
A neural network is therefore just a parametrized function that depends on a possibly large number

of parameters. If we fix the architecture, that is, the number of layers ` and the number of nodes

g

x

1
x

k+1
x

σw T x

W 1 x
+ W
(k + 1
)

b

W x

b1
k

x

σ (wT x w .∇ −g

F

F
F

σ
σ

`

F

d d

,

)

(
(

1

(x)= (

) = (
) = (

+ b)(1

)
(

=

) + b

+b)) ·
rectifiable

1.0

0.8

0.6

0.4

0.2

0.0

10 5 0 5 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5 0 5 10

10

8

6

4

2

0

10 5 0 5 10

Sigmoid tanh ReLU

k+1)

f (W , b

fi(W , b xi

xi

yi

yi

z k) .

x C(W , b

1
) =
n

i

) =

:=

(

(

)

)

)

)

=) =

, . . . , d k

δkj

L(F`

∂C
,

∂zkj

L(F`

,

,

.

.

C

wkij

L

In particular, a` = F`(xi) is the output of the neural network on input . Moreover, set
L(a`, y) for the loss function.
For every layer k and coordinate j 1
}, define the sensitivities

Denote by W and b the concatenation of all the weight matrices and bias vectors. We denote by (i,
j)-th entry of the k-th matrix, and by bk
i the i-th entry of the k-th bias vector.
Given n data points

{xi}ni=withcorrespondingoutputs{yi}n1i=1andasmoothlossfunction
task is to minimize the function

Gradiend descent, or stochastic gradient descent, requires evaluating the gradient of a function of the form

the

,the

wherezkistj zkδkjhe-thcoordinateof.Thusjmeasuresthesensitivityofthelossfunctiontotheinput at the j-th
node of the k-th layer. Denote by δk

∈ Rdk the vector of δkj for j ∈ {1, . . . , dk}. The partial
derivatives of C can be computed in terms of these quantities. In what follows, we denote by x

◦ y the
componentwise product, that is, the vector with entries xiyi.

We will describe a method for computing the gradient of such a function efficiently. In what follows, set
x=xand.Alsowrite0iy=yia=x,andfork
∈ { 1 , . . . , ` } ,

zk=Wkak−1+bk,ak=σ((24.1)

d = (d0, d1, . . . , d`), where di represents the number of nodes in each layer, we get a a hypothesis class

H={F:Rd→Rd`d:FisaNNwithformatd}.

We can use neural networks for binary classification tasks, for example, by setting d` = 1 (only one output
layer), and declaring an output to be of class 1 if F (x) > 1/2 and 0 otherwise. Alternatively, we can have
two outputs and classify according to whether the first output is larger than the second. We can train the
neural network on data (xi, yi), i

∈ {1, . . . , n}, using our favourite loss function. Neural networks are
particularly attractive for two reasons:

1. The class of neural networks is rich enough to capture almost all functions of interest (see Lecture
25).

2. The structure is simple enough to train using gradient descent, by a computational implementation
of the chain rule known as backpropagation.
We discuss the computational aspect, backpropagation, first.

∈ {

Backpropagation

∑n=1

Proposition 24.1.

for

fork

Proof.

For a neural network with

}. Moreover, the sensitivities δ

layers and

can be computed as follows:

}, we have

i , j

k < `

, . . . , `

, . . . , d k

δ
∂L(`,

∂zk
i

∂C
∂z
k

i

w

L

∂C
∂w
k

ij

∂C
∂w
k

ij

`

δ a

· σ′(z

,

∂C ∂zki
∂zk∂ k

iwij
bk
i .

1

wkak−ij
j

σ(z

d` ∂L(a`, y) ∂aj`
∂a` ∂zk

j=1 j i

δk+1
j asfollows:

k+1

∂C ∂zk+1j =
∂zk+1 ∂zk

j i

σ′(z

σ′

· σ′(z

k

∂C
∂bki

bki.

.

,

∂L(k,
∂ak

i

, . . . , `

δki

∂z
·∂z .

· σ′(z .

.

∈ { 1

∈ { 1

− } .

`)
◦∇ a `

·

·

∈ {

◦

δ` =

σ′ 1

=

=

(

=

=

=

=

) =

=

=

+

(

) + b

=

1

=

)

δki

`
i

δki

δki

δkj k
ji

zki

k k
− i

j

k
i

k
i

k

k
s

ki)

δki

ki)

k

ak−j

k
j

δkj

T

k
j

k
i

T

`i)

+1· +1

1

1

1

+1 ,

+1

k+1)

k+1

+1

k+1

k+1

For , we compute

so that the derivatives evaluate to

Putting everything together, we arrive at

We begin by showing (24.2). For

in terms of the

and similarly for the derivative with respect to

For the summands in the last expression we use

`, note that by the chain rule, we have

The claimed expressions for the derivatives then follow by applying the chain rule,

The expressions for the partial derivatives of C with respect to the weights W and the bias b
in a straight-forward way using the chain rule. More precisely, at the k-th layer write

are computed

(24.2)

(24.3)z

a y

(a`, y) , δ z

(W

W

a y)

σ

δ

d

∑k+1j=1

δ

)
∑̀ =

d

∑=j=1

∑dkzk+1j=wk+1jss=1

∂ z k+1
j = wk+1
∂zk ji
i

d

∑k−j=1

(

d

∑k+1j=1

()

) i

we get

For the common quadratic loss function

Figure 24.3: Training a neural network for classification and the error of stochastic gradient descent.

∇ a ` −
which can be computed easily from the function value F () and y. Other differentiable loss functions
may lead to different terms. Given initial weights W and bias terms b, we can compute the values ak and
zk using a forward pass, that is, by applying (24.1) recursively. We can then compute the sensitivities δk

j
using (24.3), and the partial derivatives of the loss function using (24.2), starting at layer `. This way of
computing the gradients is called backpropagation. We note that choosing the sigmoid δ as activation
function, the computation of the derivative σ′(x) is easy. The whole process of computing the gradient of a
neural network thus reduces to a simple sequence of matrix-vector product operations and sigmoids.

Example 24.2. Consider the following setting with n = 10 points. We train a neural network with four
layers and dimensions d = (d0, d1, d2, d3) = (2, 2, 3, 2) using stochastic gradient descent. The neural
network outputs a vector in R2 and classifies an input point according to whether the first coordinate is
greater or smaller than the second coordinate. Figure 24.3 shows the decision boundary by the neural
network based on 10 training points, and the display on the right shows the error per iteration of
stochastic
gradient descent.

The study of neural networks has its origin in pioneering work by McCulloch and Pitts in the 1940s.
Another seminal work in the history of artificial neural networks is the work by Rosenblatt on the
Perceptron [22]. The idea of backpropagation was explicitly named in [23] and is closely related to
automatic differentiation. Automatic differentiation has been discovered independently many times, and
an interesting overview is given here: [12]. The content of this lecture is based on the excellent tutorial
[13]. A comprehensive modern treatment of the subject can be found in the book [8].

L

L

1) =‖ a ` 2

(a`, y) =

(a`, y

a`y,
`

x

− y‖2 ,

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2 0.4 0.6 0.8 1.0

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0 20000 40000 60000 80000 100000

Notes

